• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymer behavior under the influence of interfacial interactions

Kropka, Jamie Michael, 1976- 29 August 2008 (has links)
The properties of polymers, thin films or bulk, are profoundly influenced by interactions at interfaces with dissimilar materials. Thin, supported, polymer films are subject to interfacial instabilities, due largely to competing intermolecular forces, that cause them to rupture and dewet the substrate. The addition of nanoparticles (such as clay sheets, metallic or semiconductor nanocrystals, carbon nanotubes, etc.) to polymers can substantially affect bulk properties, such as the glass transition and viscosity, and influence the processability of the material. In this dissertation, we contribute to a fundamental understanding of the role of interfacial interactions on both the instabilities exhibited by polymer thin films and the properties displayed by polymer-nanoparticle mixtures. While conditions under which the destabilization of compositionally homogeneous thin films occurs are relatively well understood, the mechanisms of film stabilization in many two-component thin film systems are still unresolved. We demonstrate that the addition of a miscible component to an unstable film can provide an effective means of stabilization. The details of the stabilization mechanism are understood in terms of the compositional dependence of both the macroscopic wetting parameters and the effective interface potential for the system. We find that the suppression of dewetting in the system is not an equilibrium stabilization process and propose a mechanism by which the increased resistance to dewetting may occur. There is also significant interest in understanding the extraordinary property enhancement of polymers that are enabled by the addition of only small concentrations of nanoparticles. If these effects could be distilled down to a few simple rules, they could be exploited in the design of materials for specific applications. In this work, the influence of C60 nanoparticles on the bulk dynamical properties of three polymers is examined. Based on the findings from a range of measurement techniques, including differential scanning calorimetry, dynamic mechanical analysis, dynamic rheology and neutron scattering, we propose that the changes in the glass transition temperature for the polymer-C₆₀ mixtures can be understood in terms of a percolation interpretation of the glass transition. The proposed mechanism is also characterized computationally. / text
2

Interfacial instabilities and the glass transition in polymer thin films

Besancon, Brian Matthew 28 August 2008 (has links)
Not available / text
3

Experimental and numerical studies of the Rayleigh-Taylor instability for bounded liquid films with injection through the boundary

Abdelall, Fahd Fathi 07 April 2004 (has links)
One of the most demanding engineering issues in Inertial Fusion Energy (IFE) reactors is the design of a reaction chamber that can withstand the intense photons, neutrons and charged particles due to the fusion event. Rapid pulsed deposition of energy within thin surface layers of the fusion reactor components such as the first wall may cause severe surface erosion due to ablation. One particularly innovative concept for the protection of IFE reactor cavity first walls from the direct energy deposition associated with soft X-rays and target debris is the thin liquid film protection scheme. In this concept, a thin film of molten liquid lead is fed through a silicon carbide first wall to protect it from the incident irradiations. Numerous studies have been reported in the literature on the thermal response of the liquid film to the intermittent photon and ion irradiations, as well as on the fluid dynamics and stability of liquid films on vertical and upward-facing inclined surfaces. However, no investigation has heretofore been reported on the stability of thin liquid films on downward-facing solid surfaces with liquid injection through (i.e. normal to the surface of) the bounding wall. This flow models the injection of molten liquid lead over the upper end cap of the reactor chamber. The hydrodynamics of this flow can be interpreted as a variation of the Rayleigh-Taylor instability due to the effect of the bounding wall which is continuously fed with the heavier fluid. In order to gain additional insight into the thin liquid film protection scheme, experiments have been conducted to investigate the critical issues associated with this concept. To this end, an experimental test facility has been designed and constructed to simulate the hydrodynamics of thin liquid films injected normal to the surface of and through downward-facing flat walls. In this doctoral thesis, the effect of different design parameters (film thickness, liquid injection velocity, liquid properties and inclination angle) on liquid film stability has been examined. The results address the morphology of the film free surface, the frequency of droplet formation and detachment, the size and penetration depth of the detached droplets, and the interface wave number. These experimental data have been used to validate a novel mechanistic numerical code based on a level contour reconstruction front tracking method over a wide range of parameters. The results of this investigation will allow designers of IFE power plants to identify appropriate windows for successful operation of the thin liquid film protection concept for different coolants.
4

Thermal stability of plasma enhanced chemical vapor deposited silicon nitride thin films

Jehanathan, Neerushana January 2007 (has links)
[Truncated abstract] This study investigates the thermal stability of Plasma Enhanced Chemical Vapor Deposited (PECVD) silicon nitride thin films. Effects of heat-treatment in air on the chemical composition, atomic bonding structure, crystallinity, mechanical properties, morphological and physical integrity are investigated. The chemical composition, bonding structures and crystallinity are studied by means of X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) Spectroscopy and Transmission Electron Microscopy (TEM). The mechanical properties, such as hardness and Young’s modulus, are determined by means of nanoindentation. The morphological and physical integrity are analyzed using Scanning Electron Microscopy (SEM) . . . The Young’s modulus (E) and hardness (H) of the film deposited at 448 K were measured to have E=121±1.8 GPa and H=11.7±0.25 GPa. The film deposited at 573 K has E=150±3.6 GPa and H=14.7±0.6 GPa. For the film deposited at 573 K, the Young’s modulus is not affected by heating up to 1148 K. Heating at 1373 K caused significant increase in Young’s modulus to 180∼199 GPa. This is attributed to the crystallization of the film. For the film deposited at 448 K, the Young’s modulus showed a moderate increase, by ∼10%, after heating to above 673 K. This is consistent with the much lower level of crystallization in this film as compared to the film deposited at 573 K. In summary, low temperature deposited PECVD SiNx films are chemically and structurally unstable when heated in air to above 673 K. The main changes include oxidation to SiO2, crystallization of Si3N4 and physical cracking. The film deposited at 573 K is more stable and damage and oxidation resistant than the film deposited at 448 K.

Page generated in 0.0822 seconds