• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 63
  • 32
  • 19
  • 13
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 316
  • 316
  • 91
  • 73
  • 72
  • 66
  • 65
  • 45
  • 43
  • 42
  • 40
  • 38
  • 36
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

CONDUCTED EMISSION STUDY ON SI AND SIC POWER DEVICES

Guo, Wilson 13 May 2019 (has links)
No description available.
72

Load Flow and State Estimation Algorithms for Three-Phase Unbalanced Power Distribution Systems

Madvesh, Chiranjeevi 15 August 2014 (has links)
Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different I testeeders and the results obtained are justified.
73

Control Based Soft Switching Three-phase Micro-inverter: Efficiency And Power Density Optimization

Amirahmadi, Ahmadreza 01 January 2014 (has links)
In the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly in the form of single-phase grid connected and they aim at the residential and commercial rooftop applications. It would be advantageous to extend the micro-inverter concept to large size PV installations such as MW-class solar farms where threephase AC connections are used. The relatively high cost of the three-phase micro-inverter is the biggest barrier to its large scale deployment. Increasing the switching frequency may be the best way to reduce cost by shrinking the size of reactive components and heat-sink. However, this approach could cause conversion efficiency to drop dramatically without employing soft switching techniques or using costly new devices. This dissertation presents a new zero voltage switching control method that is suitable for low power applications such as three-phase micro-inverters. The proposed hybrid boundary conduction mode (BCM) current control method increases the efficiency and power density of the micro-inverters and features both reduced number of components and easy digital implementation. Zero voltage switching is achieved by controlling the inductor current bidirectional in every switching cycle and results in lower switching losses, higher operating frequency, and reduced size and cost of passive components, especially magnetic cores. Some iv practical aspects of hybrid control implementation such as dead-time insertion can degrade the performance of the micro-inverter. A dead-time compensation method that improves the performance of hybrid BCM current control by decreasing the output current THD and reducing the zero crossing distortion is presented. Different BCM ZVS current control modulation schemes are compared based on power losses breakdown, switching frequency range, and current quality. Compared to continuous conduction mode (CCM) current control, BCM ZVS control decreases MOSFET switching losses and filter inductor conduction losses but increases MOSFET conduction losses and inductor core losses. Based on the loss analysis, a dual-mode current modulation method combining ZVS and zero current switching (ZCS) schemes is proposed to improve the efficiency of the micro-inverter. Finally, a method of maintaining high power conversion efficiency across the entire load range of the three-phase micro-inverter is proposed. The proposed control method substantially increases the conversion efficiency at light loads by minimizing switching losses of semiconductor devices as well as core losses of magnetic components. This is accomplished by entering a phase skipping operating mode wherein two phases of an inverter are disabled and three inverters are combined to form a new three-phase system with minimal grid imbalance. A 400W prototype of a three-phase micro-inverter and its hybrid control system have been designed and tested under different conditions to verify the effectiveness of the proposed controller, current modulation scheme, and light load efficiency enhancement method.
74

Automation, Annunciation, and Emergency Safety Shutdown of a Laboratory Microgrid Using a Real-Time Automation Controller (RTAC)

Vo, Do 01 May 2021 (has links) (PDF)
Over the last decade, microgrid deployments throughout the world have increased. In 2019, a record number of 546 microgrids were installed in the United States [1]. This trend continues upward to combat extreme weather conditions and power shortages throughout the country. To better equip students with the necessary skillsets and knowledge to advance in the microgrid field, Cal Poly San Luis Obispo's Electrical Engineering Department and the Power Energy Institute have invested resources to develop a laboratory microgrid. This thesis sets to improve the laboratory microgrid's existing automation using the Schweitzer Engineering Laboratory SEL-3530 Real-time Automation Controller (RTAC). The improved automation features a new load-shedding scheme, LCD annunciator and meter panel, and emergency safety shutdown system. The load shedding scheme aims to enhance the grid's frequency stability when the inverter-based power output declines. The LCD annunciator and meter panels provide real-time oversight of the microgrid operating conditions via the RTAC Human Machine Interface (HMI). The emergency safety shutdown enables prompt de-energization and complete isolation of the laboratory microgrid in hazardous conditions such as earthquake, fire, arcing, and equipment malfunction and activates an audible siren to alert help. This safety system provides safety and peace of mind for students and faculties who operate the Microgrid. Lastly, this thesis provides an operating procedure for ease of operation and experiment.
75

Towards Three-Phase Dynamic Analysis of Large Electric Power Systems

Parchure, Abhineet Himanshu 20 July 2015 (has links)
This thesis primarily focuses on studying the impact of Distributed Generation (DG) on the electromechanical transients in the electric grid (distribution, transmission or combined transmission and distribution (TandD) systems) using a Three Phase Dynamics Analyzer (hereafter referred to as TPDA). TPDA includes dynamic models for electric machines, their controllers, and a three-phase model of the electric grid, and performs three-phase dynamic simulations without assuming a positive sequence network model. As a result, TPDA can be used for more accurate investigation of electromechanical transients in the electric grid in the presence of imbalances. At present, the Electromagnetic Transient Program (EMTP) software can be used to perform three-phase dynamic simulations. This software models the differential equations of the entire electric network along with those of the machines. This calls for solving differential equations with time constants in the order of milliseconds (representing the fast electric network) in tandem with differential equations with time constants in the order of seconds (representing the slower electromechanical machines). This results in a stiff set of differential equations, making such an analysis extremely time consuming. For the purpose of electromechanical transient analysis, TPDA exploits the difference in the order of time constants and adopts phasor analysis of the electric network, solving differential equations only for the equipment whose dynamics are much slower than those of the electric network. Power Flow equations are solved using a graph trace analysis based approach which, along with the explicit partitioned method adopted in TPDA, can eventually lead to the use of distributed computing that will further enhance the speed of TPDA and perhaps enable it to perform dynamic simulation in real time . In the work presented here, first an overview of the methodology behind TPDA is provided. A description of the object oriented implementation of TPDA in C++/C# is included. Subsequently, TPDA is shown to accurately simulate power system dynamics of balanced networks by comparing its results against those obtained using GE-PSLF®. This is followed by an analysis that demonstrates the advantages of using TPDA by highlighting the differences in results when the same problem is analyzed using a three-phase network model with unbalances and the positive sequence network model as used in GE-PSLF®. Finally, the impact of rapidly varying DG generation is analyzed, and it is shown that as the penetration level of DG increases, the current and voltage oscillations throughout the transmission network increase as well. Further, rotor speed deviations are shown to grow proportionally with increasing DG penetration. / Master of Science
76

Improving fuel quality by whole crude oil hydrotreating: A kinetic model for hydrodeasphaltenization in a trickle bed reactor

Jarullah, Aysar Talib, Mujtaba, Iqbal M., Wood, Alastair S. January 2012 (has links)
Fossil fuel is still a predominant source of the global energy requirement. Hydrotreating of whole crude oil has the ability to increase the productivity of middle distillate fractions and improve the fuel quality by simultaneously reducing contaminants such as sulfur, nitrogen, vanadium, nickel and asphaltene to the levels required by the regulatory bodies. Hydrotreating is usually carried out in a trickle bed reactor (TBR) where hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM) and hydrodeasphaltenization (HDAs) reactions take place simultaneously. To develop a detailed and a validated TBR process model which can be used for design and optimization of the hydrotreating process, it is essential to develop kinetic models for each of these reactions. Most recently, the authors have developed kinetic models for all of these chemical reactions except that of HDAs. In this work, a kinetic model (in terms of kinetic parameters) for the HDAs reaction in the TBR is developed. A three phase TBR process model incorporating the HDAs reactions with unknown kinetic parameters is developed. Also, a series of experiments has been conducted in an isothermal TBR under different operating conditions affecting the removal of asphaltene. The unknown kinetic parameters are then obtained by applying a parameter estimation technique based on minimization of the sum of square errors (SSEs) between the experimental and predicted concentrations of asphaltene compound in the crude oil. The full model with the estimated kinetic parameters is then applied to evaluate the removal of asphaltene (thus affecting fuel quality) under different operating conditions (than those used in experiments).
77

Voltage Unbalance Mitigation in Low Voltage Distribution Networks using Time Series Three-Phase Optimal Power Flow

Al-Ja'afreh, M.A.A., Mokryani, Geev 12 October 2021 (has links)
No / Due to high penetration of single-phase Photovoltaic (PV) cells into low voltage (LV) distribution networks, several impacts such as voltage unbalance, voltage rise, power losses, reverse power flow arise which leads to operational constraints violation in the network. In this paper, a time series Three Phase Optimal Power Flow (TPOPF) method is proposed to minimize the voltage unbalance in LV distribution networks with high penetration of residential PVs. TPOPF problem is formulated using the current injection method in which the PVs are modelled via a time-varying PV power profile with active and reactive power control. The proposed method is validated on a real LV distribution feeder. The results show that the reactive power management of the PVs helps mitigate the voltage unbalance significantly. Moreover, the voltage unbalance index reduced significantly compared to the case without voltage unbalance minimisation. / Innovate UK GCRF Energy Catalyst Pi-CREST project under Grant number 41358; British Academy GCRF COMPENSE project under Grant GCRFNGR3\1541; Mut’ah University, Jordan
78

Flux-Based Dynamic Subspace Model Predictive Control of Dual-Three Phase Permanent Magnet Synchronous Motors

Agnihotri, Williem 11 1900 (has links)
ual-three phase permanent magnet synchronous motors (DTP-PMSM) are becom ing more popular in the automotive field. Their potential to increase the reliability and efficiency of the vehicle makes them an attractive replacement for the three phase alternative. However, the increased number of phases makes the control of the machine more complex. As a result, conventional controllers can see reduced perfor mance, especially at high speeds and torques. Currently, with the increased process ing power of modern micro-controllers and field-programmable gate arrays (FPGA), many researchers are investigating whether finite-control set model predictive control (FCS-MPC) can be a suitable alternative. FCS-MPC is simple to implement and can achieve a better dynamic performance when compared to other controllers. Furthermore, the algorithm can be augmented for specific optimization goals and non-linearities to the system, which gives the designer creativity in improving the system response. However, Model-Predictive Control suffers from a variable switching frequency as well as reduced steady-state performance. It generally has increased current ripple in the phase currents. This thesis presents a method of reducing the steady-state ripples in FCS-MPC by introducing the use of virtual-flux in the model equations, the incremental model, and a dynamic vector search-space. All three of these applications make FCS-MPC have a iv significantly improved steady-state performance when compared to the conventional algorithm, while still keeping the benefit of the improved dynamic response. The benefits of the proposed techniques techniques are verified through simulation as well as on an experimental setup. / Thesis / Master of Applied Science (MASc)
79

Three-Phase Inverter Design Using Wide-Bandgap Semiconductors to Achieve High Power Density

Eull, William January 2016 (has links)
Electric and more-electric vehicle proliferation continues unabated as government mandates worldwide demand fuel economies in excess of what conventional internal combustion engines are capable of. Vehicle electrification, to any degree, is perceived to be the means by which automotive companies may meet these targets. Electrification introduces a myriad of problems including cost, weight and reliability, all of which must be addressed in their own right. The rapid commercialisation of wide-bandgap semiconductor materials which, as a whole, exhibit properties superior to ubiquitous Silicon, provides the opportunity for power electronic converter minimisation and efficiency maximisation, easing the challenge of meeting current and incoming standards. This thesis concerns itself with the design methodology of a highly power dense converter, as applied to a three-phase inverter. By using figures of merit, simple modelling techniques and novel discrete component selection tools, a converter is designed that is capable of switching 30kW of electric power at 100kHz in a small package. Testing results show that the converter, with a simple forced air heatsinking solution, can effectively switch 9kW of power and is capable of reaching 15kW. Given the temperature rise of one phase leg of the inverter relative to the others, a superior heatsink design would allow the inverter to reach its rated power levels. / Dissertation / Master of Applied Science (MASc)
80

Three-Phase Linear State Estimation with Phasor Measurements

Jones, Kevin David 17 May 2011 (has links)
Given the ability of the Phasor Measurement Unit (PMU) to directly measure the system state and the increasing implementation of PMUs across the electric power industry, a natural expansion of state estimation techniques would be one that employed the exclusive use of PMU data. Dominion Virginia Power and the Department of Energy (DOE) are sponsoring a research project which aims to implement a three phase linear tracking state estimator on Dominion's 500kV network that would use only PMU measurements to compute the system state. This thesis represents a portion of the work completed during the initial phase of the research project. This includes the initial development and testing of two applications: the three phase linear state estimator and the topology processor. Also presented is a brief history of state estimation and PMUs, traditional state estimation techniques and techniques with mixed phasor data, a development of the linear state estimation algorithms and a discussion of the future work associate with this research project. / Master of Science

Page generated in 0.1165 seconds