371 |
Device modeling and circuit design for ZTO based amorphous metal oxide TFTsJoshi, Tanvi Dhananjay 11 July 2011 (has links)
Amorphous Oxide semiconductors have gained large interest in the display industry owing to their high carrier mobilities and low fabrication costs. In this thesis, n-channel solution based zinc-tin oxide (ZTO) thin-film transistors (TFTs) are studied from a circuit design perspective. The study includes an iterative process of circuit design, layout and test procedure of the fabricated devices in the lab. The device models used in circuit simulations are refined following the data fed back from each of these iterations which has enabled more accurate design of complex circuits using ZTO devices. The requirement and development of a physical compact model for performing accurate and predictive circuit simulations has been presented. The use of ZTO devices in low cost, transparent and flexible electronic applications has been investigated through the study of basic circuit blocks such as amplifiers, ring oscillators, inverters and a four stage Operational Amplifier. / text
|
372 |
Circuit design and device modeling of zinc-tin oxide TFTsDivakar, Kiran 11 July 2011 (has links)
Amorphous Oxide Semiconductors (AOS) are widely being explored in the field of flexible and transparent electronics. In this thesis, solution processed zinc-tin oxide (ZTO) n-channel TFT based circuits are studied. Inverters, single stage amplifiers and ring oscillators are designed, fabricated and tested. 7-stage ring oscillators with output frequencies up to 106kHz and 5-stage ring oscillators with frequencies up to 75kHz are reported.
A stable three stage op-amp with a buffered output is designed for a gain of 39.9dB with a unity gain frequency of 27.7kHz. A 7-stage ring oscillator with output frequency close to 1MHz is simulated and designed. The op-amp and the ring oscillator are ready to be fabricated and tested. An RPI model for a-Si, adapted to fit the ZTO device characteristics, is used for simulation.
Development of a new model based on the physics behind charge transport in ZTO devices is explored. An expression for gate bias dependent mobility in ZTO devices is derived. / text
|
373 |
Asian Games Village: a High-Density Sports ComplexLaw, Cheuk-fung, Jimmy., 羅卓豐. January 2002 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
|
374 |
Education parkTse, Shuk-yee, Bonita, 謝淑儀 January 1996 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
|
375 |
Community policing in Hong Kong: a case studyof the community awareness programme in Tin Shui Wai, Yuen LongChan, Lai-lan, Carman., 陳麗蘭. January 1998 (has links)
published_or_final_version / Sociology / Master / Master of Social Sciences
|
376 |
Role of district board in new town development: a case study of Shatin District BoardLiaw, Lily Rita., 廖莉莉. January 1990 (has links)
published_or_final_version / Public Administration / Master / Master of Public Administration
|
377 |
Perinatal care centreLee, Lap-chi, Angela., 李立芝. January 1996 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
|
378 |
Youth complex in HomantinTang, Wing-sum., 鄧詠森. January 1998 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
|
379 |
Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar CellsMacDonald, Gordon Alex January 2015 (has links)
This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide (TCO) electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles regarding the need for low cost power generation, the benefits of OPV technologies, as well as the key principles that govern the operation of OPV devices and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between an electrode, such as ITO, and an OSC such as the p-type OSC copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of J-V curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (nonohmic). These results strongly correlate with device PCE, as demonstrated through the controlled addition of insulating alkylphosphonic acid self-assembled monolayers (SAMs) at the ITO/CuPc interface. Subsequent chapters focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the organic semiconducting (OSC) active materials plays a critical role in determining the PCE of OPV devices and the appearance of, or lack thereof, UV light soaking sensitivity. For ZnO and fullerene interfaces, we have shown that either minimizing the oxygen partial pressure during ZnO deposition or exposure of ZnO to UV light minimizes the energetic offset at this interface and maximizes device PCE. We have used a combination of device testing, device modeling, and impedance spectroscopy to fully characterize the effects that energetic alignment has on the charge carrier transport and charge carrier distribution within the OPV device. This work can be found in Chapter 3 of this dissertation and is in preparation for publication. We have also shown that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films. We demonstrate that this effects the morphology, the chemical resistance to etching as well as the surface electrical properties of the sp-ZnO films. This is likely due to differences in the surface mobility of sputtered Zn and O atoms on these crystal faces during film nucleation. This affects the nanoscale distribution of electrical and chemical properties. As a result we demonstrate that the PCE, and UV sensitivity of the J-V response of OPVs using sp-ZnO ESLs are strongly impacted by the distribution of ITO crystal faces at the surface of the substrate. This work can be found in Chapter 4 of this dissertation and is in preparation for publication. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at the MO/OSC interface play in OPV PCE.
|
380 |
Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic DevicesBrumbach, Michael T. January 2007 (has links)
Photovoltaics manufactured using organic materials as a substitute for inorganic materials may provide for cheaper production of solar cells if their efficiencies can be made comparable to existing technologies. Photovoltaic devices are comprised of layered structures where the electrical, chemical, and physical properties at the multiple interfaces play a significant role in the operation of the completed device. This thesis attempts to establish a relationship between interfacial properties and overall device performance by investigation of both the organic/organic heterojunction interface, as well as the interface between the inorganic substrate and the first organic layer with useful insights towards enhancing the efficiency of organic solar cells.It has been proposed that residual chemical species may act as barriers to charge transfer at the interface between the transparent conductor (TCO) and the first organic layer, possibly causing a large contact resistance and leading to reduced device performance. Previous work has investigated the surface of the TCO but no baseline characterization of carbon-free surfaces has previously been given. In this work clean surfaces are investigated to develop a fundamental understanding of the intrinsic spectra such that further analyses of contaminated surfaces can be presented systematically and reproducibly to develop a chemical model of the TCO surface.The energy level offset at the organic/organic heterojunction has been proposed to relate to the maximum potential achievable for a solar cell under illumination, however, few experimental observations have been made where both the interface characterization and device performance are presented. Photovoltaic properties are examined in this work with titanyl phthalocyanine used as a novel donor material for enhancement of spectral absorption and optimization of the open-circuit potential. Characterization of the interface between TiOPc and C60 coupled with characterization of the interface between copper phthalocyanine and C60 shows that the higher ionization potential of TiOPc does correlate to greater open circuit potentials.Examination of photovoltaic behavior using equivalent circuit modeling relates the importance of series resistance and recombination to the homogeneity of the solar cell structure.
|
Page generated in 0.0255 seconds