• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration of plasmonic nano-composites and study of their specific catalytic activities / Élaboration de nanocomposites plasmoniques et étude des activités catalytiques spécifiques

Ishchenko, Olga 30 September 2016 (has links)
L’objective est d’améliorer l’activité photocatalytique de TiO2 sous irradiations UV et Visible. Pour contourner les limites de TiO2 intrinsèque nous envisageons une fabrication de nanocomposite plasmonique à base de nanofils de TiO2 périodiquement organisés et assemblés avec des nanoparticules plasmoniques. Pour la fabrication des nanofils de TiO2 mécaniquement stables, deux approches ont été réalisées. La première approche est basée sur la croissance sélective en phase vapeur, la deuxième approche consiste en l’utilisation d’un moule de membranes AAO et d’un dépôt de films conformes par ALD. En parallèle les films de TiO2déposés par ALD sont assemblés avec les nanoparticules plasmoniques d’or. Les différentes architectures de TiO2 sont valorisées par des tests photocatalytiques (UV et Visible) sur les polluants modèles. Une nouvelle approche de la fabrication des films mesoporeux d’H-TiO2 avec efficacité photocatalytique à la fois sous irradiation UV et Visible est développée. / The objective of this thesis is to improve the photo-response of well-known photocatalytic material such as TiO2, which is usually only active in the UV range. The basic idea is to assemble several approaches within one device to improve the photocatalytic properties: fabrication of periodically-organised TiO2 nanostructures and their assembly with plasmonic nanoparticles. Two fabrication strategies were investigated for these purposes. The first approach consists of selective vapour phase growth. The second approach implements the use of an AAO template. In parallel, TiO2 films deposited by ALD and assembled with plasmonic gold nanoparticles are investigated. The photocatalytic measurements on various TiO2 architectures were performed in both irradiation ranges UV and Vis. A new fabrication approach of mesoporous H-TiO2 films was developed giving promising results of photocatalytic efficiency improvement in both UV and Visible ranges.
2

Hierarchical TiO₂–SnO₂–graphene aerogels for enhanced lithium storage

Han, Sheng, Jiang, Jianzhong, Huang, Yanshan, Tang, Yanping, Cao, Jing, Wu, Dongqing, Feng, Xinliang 13 January 2020 (has links)
Three-dimensional (3D) TiO₂–SnO₂–graphene aerogels (TTGs)were built up from the graphene oxide nanosheets supported with both TiO₂ and SnO₂ nanoparticles (NPs) via a facile hydrothermal assembly process. The resulting TTGs exhibit a 3D hierarchical porous architecture with uniform distribution of SnO₂ and TiO₂ NPs on the graphene surface, which not only effectively prevents the agglomeration of SnO₂ NPs, but also facilitates the fast ion/electron transport in 3D pathways. As the anode materials in lithium ion batteries (LIBs), TTGs manifest a high reversible capacity of 750 mA h g⁻¹ at 0.1 A g⁻¹ for 100 cycles. Even at a high current density of 1 A g⁻¹, a reversible capacity of 470mA h g⁻¹ can still be achieved from the TTG based LIB anode over 150 cycles.
3

Investigation Of Thin Semiconductor Coatings And Their Antimicrobial Properties

Erkan, Arcan 01 August 2003 (has links) (PDF)
Regular disinfection of surfaces is required in order to reduce the number of microorganisms, unable to transmit infections and maintaining the surfaces sterilized. For this purpose, antimicrobial thin film coatings on the various surfaces such as glass and ceramic surfaces, capable of killing harmful microorganisms are being investigated. Generally a semiconducting material which can be activated by UV light tends to exhibit a strong antimicrobial activity. With holes (h+) and hydroxyl radicals (OH*) generated in the valence band, electrons and the superoxide ions (O2-) generated in the conduction band, illuminated semiconductor photocatalysts can inactivate microorganisms by participating in a series of oxidation reactions leading to carbon dioxide. The aim of this current study was developing semiconductor coatings, increasing the photocatalytic activity of these coatings by metal doping, particularly palladium doping, and investigating the antimicrobial properties of these coatings. In this study, glass surfaces were coated with titanium dioxide (TiO2), tin dioxide (SnO2) and palladium doped TiO2 and SnO2 sol-gels. After achieving thin, dense and strong coatings, antimicrobial properties of the coatings were investigated by applying the indicator microorganisms directly onto the coated glasses. Different cell wall structure of microorganisms can strongly affect the photocatalytic efficiency of the coatings. Hence Escherichia coli as a Gr (-) bacteria, Staphylococcus aereus as Gr (+) bacteria, Saccharomyces cerevisiae as a yeast and Aspergilus niger spores were used in the experiments. Photocatalytic efficiency of TiO2 was better than SnO2 coatings. Palladium doping increased the antimicrobial activity of both coatings. The reduction efficiencies were found to decrease in the following order of E. coli [Gr (-)] &gt / S. aereus [Gr (+)] &gt / S.cerevisiae (yeast) &gt / A. niger spores. The complexity and the density of the cell walls increased in the same order. As a result of this study, with the coating that shows the best photocatalytic activity, 98% of Escherichia coli, 87% of Staphylococcus aereus, 43% Saccharomyces cerevisiae were killed after 2 hours illumination.
4

Application Of Semi Conductor Films Over Glass/ceramic Surfaces And Their Low Temperature Photocatalytic Activity

Ersoz, Tugce Irfan 01 February 2009 (has links) (PDF)
Semiconductor metal oxides can be induced by light with proper wavelength resulting in oxidation and reduction reactions for the transformation of water and oxygen molecules into active radicals. With this method, it is possible to obtain self-cleaning surfaces and products having antimicrobial properties. The aim of this study is to develop semiconductor metal oxide thin films for multifunctional glass products and the characterization of photocatalytic self cleaning and antimicrobial properties. As semiconductor metal oxides / titanium dioxide (TiO2), tin oxide (SnO2) and their binary mixtures (TiO2-SnO2) are selected because of their abundancy, non toxic properties, stability and the ability of absorbing light close to visible range. Also the effect of metal dopants such as praseodymium (Pr), palladium (Pd), silver (Ag) and iron (Fe) was examined with these metal oxides. The colloidal solutions were synthesized by using sol-gel method in order to apply the developed method to industrial usage as applying on large surfaces. The glass substrates were coated with the colloidal solutions by dip coating and the dried samples were calcined under air flow. The best calcination condition for pure TiO2 coated thin film was determined as 400oC for 45 minutes. Surface characterization studies were performed by using UV-Visible Spectrophotometer for band gap measurement, CAM for contact angle measurement, SEM for surface morphology and tophology. The methylene blue adsorption tests were carried out and the effective surface area of the samples were predicted by the Langmuir adsorption isotherm of samples. The photocatalytic activities of the coated thin films were measured with the degradation of organic materials as red wine and methylene blue, and with the antimicrobial activity tests as counting the number of viable E.coli cells. 61.2% deactivation of methylene blue stain was achieved over SnO2 coated thin films while this was 22.1% over TiO2 coated thin films after irradiation for 180 minutes. The superior photocatalytic activity was observed with TiO2 samples doped with Pd and Ag ions. The TiO2-SnO2 coated samples performed limited photocatalytic activity which is less than the activity of SnO2 coated samples which was confirmed with surface area measurements as SnO2 coated samples had higher surface area (9.81 cm2/cm2) than TiO2-SnO2 coated samples. Surface area increased with increasing the amount of SnO2 and it was in the following order: SnO2 &gt / 80% SnO2 + 20% TiO2 &gt / 50% SnO2 + 50%TiO2 &gt / 35% SnO2 + 65%TiO2 &gt / 20% SnO2 + 80% TiO2 &gt / TiO2.

Page generated in 0.0335 seconds