Spelling suggestions: "subject:"time off ighlight"" "subject:"time off highlight""
101 |
Messung von Wirkungsquerschnitten für die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der 15N(p,n)-Reaktion als NeutronenquellePönitz, Erik 25 August 2010 (has links) (PDF)
In zukünftigen kerntechnischen Anlagen können die Materialien Blei und Bismut eine größere Rolle spielen als heute. Für die Planung dieser Anlagen werden verlässliche Wirkungsquerschnittsdaten benötigt. Insbesondere der Neutronentransport in einem Blei-Spallationstarget eines beschleunigergetriebenen unterkritischen Reaktors hängt stark von den inelastischen Streuquerschnitten im Energiebereich von 0,5 MeV bis 6 MeV ab.
In den vergangenen 20 Jahren wurden elastische und inelastische Neutronenstreuquerschnitte mit hoher Präzision für eine Vielzahl von Elementen am PTB-Flugzeitspektrometer gemessen. Zur Erzeugung der Neutronen wurde hauptsächlich die D(d,n)-Reaktion genutzt. Aufgrund des Q-Wertes der Reaktion und der verfügbaren Deuteronenenergien können Neutronen im Energiebereich von 6 MeV bis 16 MeV erzeugt werden. Die Messung von Wirkungsquerschnitten bei niedrigeren Energien erfordert somit die Verwendung einer anderen neutronenerzeugenden Reaktion. Hierfür wurde die 15N(p,n)15O-Reaktion ausgewählt, da sie die Erzeugung monoenergetischer Neutronen bis zu einer Energie von 5,7 MeV erlaubt.
In dieser Arbeit wird die 15N(p,n)-Reaktion auf ihre Eignung als Quelle monoenergetischer Neutronen in Streuexperimenten untersucht. Die Untersuchung der Reaktion beinhaltet die Messung von differentiellen Wirkungsquerschnitten für ausgewählte Energien und die Auswahl von optimalen Targetbedingungen.
Differentielle elastische und inelastische Neutronenstreuquerschnitte wurden unter Anwendung der Flugzeitmethode für Blei bei vier Energien zwischen 2 MeV und 4 MeV gemessen. Eine Bleiprobe mit natürlicher Isotopenzusammensetzung wurde verwendet. Für den
Nachweis der gestreuten Neutronen wurden NE213 Flüssigszintillatoren verwendet, deren Nachweiswahrscheinlichkeit gut bekannt ist. Winkelintegrierte Wirkungsquerschnitte wurden mit einem Legendre-Polynomfit unter Verwendung der Methode der kleinsten Quadrate bestimmt. Zusätzlich erfolgten Messungen für die isotopenreinen Streuproben 209Bi und 181Ta bei 4 MeV Neutronenenergie. Die Ergebnisse werden mit denen früherer Experimente und aktuellen Evaluationen verglichen. / In future nuclear facilities, the materials lead and bismuth can play a more important role than in today’s nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5MeV to 6 MeV.
In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6MeV to 16MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15N(p,n)15O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy.
In this work, the 15N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions.
Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2MeV to 4MeV incident neutron energy using the time-offlight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209Bi and 181Ta samples at 4MeV incident neutron energy. Results are compared with other measurements and recent evaluations.
|
102 |
Discovery based yeast metabolomic analysis using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry and chemometrics /Mohler, Rachel E., January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 161-186).
|
103 |
Chemical fingerprinting and identification of unknowns in counterfeit artesunate antimalarial tablets from southeast asia by liquid chromatography/time-of-flight mass spectrometryHall, Krystyn Alter. January 2005 (has links)
Thesis (M. S.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2006. / Fernandez, Facundo, Committee Chair ; Janata, Jiri, Committee Member ; Mizaikoff, Boris, Committee Member.
|
104 |
Study of surfaces of semi-crystalline polymers by static time-of-flight secondary ion mass spectrometry /Lau, Richard Yiu-Ting. January 2010 (has links)
Includes bibliographical references (p. 162-177).
|
105 |
Explorations of electrothermal vaporization inductively coupled plasma time-of-flight mass spectrometry for isotopic analysisRowland, Adam Michael, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
|
106 |
The unbound nucleus 13BeJones, K. L. January 2000 (has links)
The fragmentation of a 133 pps beam of 14Be ions at 35 MeV/A on targets of carbon and lead has been used to study the structure of the unbound nucleus 13Be. Neutrons and 12Be reaction products were measured in the DeMoN array and a detector telescope placed at 0° respectively. These coincidence measurements were used to reconstruct the 13Be particles. The beam energy was measured on a particle by particle basis from the time of flight. This was essential for momentum measurements which were made in the reference frame of the projectile. A significant contribution to the experimental background came from reactions in the detector telescope, which had to be subtracted. Relative velocity (arithmetic velocity difference) and invariant mass analyses both signify the existance of significant strength close to the 12Be + n threshold. Simulations including an experimental filter clearly show that this includes strength that is localised below 500 ke V in relative energy. Momentum distributions for 12Be, 10Be, neutrons and the reconstructed 13Be particle in the longitudinal direction have been measured. The 13Be distribution displays evidence for a two component structure. Calculations of the neutron stripping from 14Be have shown that this structure requires s-wave stripping to explain the narrow component. The wider component is consistent with d- wave stripping, and additional contributions from p-wave stripping cannot be excluded. The angular distribution of neutrons from 12Be + n breakup, measured in the 13Be reference frame is essentially isotropic. There is evidence for a weak asymmetry which could be due to broad over-lapping states of both positive and negative parity at energies below 2 MeV. This would support the inclusion of a P½ resonance in the low-lying structure of 13Be.
|
107 |
Monte Carlo simulations of a back scatter time-of-flight neutron spectrometer for the purpose of concept testing.Eriksson, Benjamin January 2018 (has links)
The work focuses on Monte Carlo simulations for finding the optimal back scatter time-of-flight spectrometer design for concept testing at the NESSA facility at Uppsala University. The spectrometer consists of two scintillator detectors, D1 (placed in a neutron beam) and D2 (placed in front of D1), at some distance from each other. A fraction of the neutrons that impinge on D1 back scatter into D2 and information on the neutron energy distribution is acquired using the time-of-flight method. For the given constraints on geometry, resolution and efficiency a best resolution was found to be 6.6% with a corresponding efficiency of 1E-4 which gives a sufficient count rate for a neutron generator producing 1E+11 neutrons/s. In order to achieve a minimum of 10 000 counts/h with the same setup a D2 with an area of at least 7 cm^2 is required.
|
108 |
Photon migration in pulp and paperSaarela, J. (Juha) 07 December 2004 (has links)
Abstract
The thesis clearly demonstrates that photon migration measurements allow characterization of pulp and paper properties, especially the fines and filler content of pulp, and the basis weight, thickness and porosity of paper.
Pulp and paper are materials with a worldwide significance. Their properties strongly depend on the manufacturing process used. For efficient process control, the employed monitoring and measuring has to be fast. Therefore it is worthwhile to try to develop new approaches and techniques for such measurements. Recent advancements in optics offer new possibilities for such development.
If two samples have different optical properties their photon migration distributions are different. The measurement of a photon migration distribution allows some features between two optically slightly dissimilar samples to be distinguished. Some simple measurements, which only yielded the photons' average time of flight, were made with an oscilloscope and a time-of-flight lidar. More precise measurements yielding photon pathway distribution or some selected characteristics like light pulse rise time, broadening, or fall time were measured with a streak camera. Two methods to assess photon path length distribution were introduced: particle determination with simulation, and streak camera with deconvolution.
The basic properties for pulp are consistency and fines content and for paper the basic properties are thickness, basis weight and porosity. The influence on photon migration caused by changes in these basic properties was determined.
As pulp and paper are rarely very basic, an additional property was demonstrated for both materials. For pulp it was the content of filler talc, and for paper it was the use of beaten pulp as a raw material. These additional properties were also distinguishable.
|
109 |
Comparison of optical coherence tomography, the pulsed photoacoustic technique, and the time-of-flight technique in glucose measurements <em>in vitro</em>Kinnunen, M. (Matti) 08 August 2006 (has links)
Abstract
The development of a non-invasive glucose monitoring technique is very important because it would tremendously diminish the need to puncture the skin when taking blood samples and help diabetic patients in controlling their blood glucose levels and in treating Diabetes Mellitus. The focus of this thesis is on measuring the effect of glucose on the light scattering properties of a tissue-simulating phantom and biological tissues in vitro. Optical coherence tomography (OCT), the pulsed photoacoustic (PA) technique, and the time-of-flight (TOF) technique are used in the measurements and their capabilities for detecting changes in the scattering properties are evaluated and compared with each other. The theoretical background of the techniques, light propagation and PA wave generation are briefly explained. The glucose-induced changes in light scattering are also reviewed.
The measurement results with the OCT and the PA technique from Intralipid, pig whole blood, and mouse skin tissue samples show that the glucose-induced changes are larger in the biological tissues than in the Intralipid phantom. The PA measurements show that although the PA signals are stronger at a wavelength of 532 nm than at 1064 nm, the glucose-induced change in the peak-to-peak value of the PA signal measured from pig whole blood is larger at a wavelength of 1064 nm than at 532 nm. The TOF measurements with a streak camera show that the scattering-related changes in the registered pulse shapes occur mainly in the rising part of the pulses. The utilization of fiber-optic measurement heads enabled the detection of back-scattered photons at different distances from the emitting fiber.
Although all the techniques are able to detect changes induced by large glucose concentrations (0–5000 mg/dl) in Intralipid, the effect of glucose on the scattering properties of Intralipid is so weak that the techniques failed to detect changes with lower (50–500 mg/dl) concentrations. The measurements of biological samples with the PA technique and with the OCT also demonstrate capabilities to measure glucose concentrations in the physiologically relevant range (18–450 mg/dl) as well. The results compare well with earlier literature and also confirm some earlier findings.
|
110 |
Depth Map Upscaling for Three-Dimensional Television : The Edge-Weighted Optimization ConceptSchwarz, Sebastian January 2012 (has links)
With the recent comeback of three-dimensional (3D) movies to the cinemas, there have been increasing efforts to spread the commercial success of 3D to new markets. The possibility of a 3D experience at home, such as three-dimensional television (3DTV), has generated a great deal of interest within the research and standardization community. A central issue for 3DTV is the creation and representation of 3D content. Scene depth information plays a crucial role in all parts of the distribution chain from content capture via transmission to the actual 3D display. This depth information is transmitted in the form of depth maps and is accompanied by corresponding video frames, i.e. for Depth Image Based Rendering (DIBR) view synthesis. Nonetheless, scenarios do exist for which the original spatial resolutions of depth maps and video frames do not match, e.g. sensor driven depth capture or asymmetric 3D video coding. This resolution discrepancy is a problem, since DIBR requires accordance between the video frame and depth map. A considerable amount of research has been conducted into ways to match low-resolution depth maps to high resolution video frames. Many proposed solutions utilize corresponding texture information in the upscaling process, however they mostly fail to review this information for validity. In the strive for better 3DTV quality, this thesis presents the Edge-Weighted Optimization Concept (EWOC), a novel texture-guided depth upscaling application that addresses the lack of information validation. EWOC uses edge information from video frames as guidance in the depth upscaling process and, additionally, confirms this information based on the original low resolution depth. Over the course of four publications, EWOC is applied in 3D content creation and distribution. Various guidance sources, such as different color spaces or texture pre-processing, are investigated. An alternative depth compression scheme, based on depth map upscaling, is proposed and extensions for increased visual quality and computational performance are presented in this thesis. EWOC was evaluated and compared with competing approaches, with the main focus was consistently on the visual quality of rendered 3D views. The results show an increase in both objective and subjective visual quality to state-of-the-art depth map upscaling methods. This quality gain motivates the choice of EWOC in applications affected by low resolution depth. In the end, EWOC can improve 3D content generation and distribution, enhancing the 3D experience to boost the commercial success of 3DTV.
|
Page generated in 0.044 seconds