• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 8
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 44
  • 44
  • 16
  • 15
  • 13
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of the intact stability of Indonesian small open-deck roll-on/roll-off passenger ferries

Anggoro, Suryo, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Small open-deck roll-on/roll-off passenger ferries in Indonesia have a poor safety record. The Indonesian Government is interested in means by which the safety of these vessels can be improved, and this was the main catalyst for commencing research in this area. Any solution should be capable of being retrofitted to both existing vessels and new designs to improve their stability and, hence, their safety. The research therefore focused on the intact stability of the bare hulls, and with addition of side casings, for the vessels for which data was made available by the Indonesian Government. The research covered both quasi-static analysis, based on the objective of meeting the IMO intact stability criteria, and a dynamic approach using time-domain simulation in regular beam waves. A parametric study of the stability parameters of the twenty vessels demonstrated that, without the presence of side casings, the vessels had difficulties in complying with the IMO intact stability criteria. The problems were solved by introducing side casings (watertight spaces above the vehicle deck) either inboard of the vessel’s side-shell plating, or partially inboard and partially outboard of the side shell. The minimum extent (breadth) of side casings required was determined by iteration on each of the twenty vessels, incorporating variations in the height of the centre of gravity and loading conditions. The implementation of the minimum side casings showed that each vessel then met the IMO intact stability criteria. However, the assessment of the vessels’ dynamic stability characteristics using time-domain simulation provided inconsistent results for these vessels with side casings which met the IMO intact stability criteria. For some particular conditions, the existence and the different forms of side casings could decrease vessel survivability by increasing the roll motion amplitudes for both inside and outside casings and could lead the vessel to capsize. The results of the dynamic stability analysis also confirmed the vulnerability of small vessels with small stability parameters to large waves, and the different roll seakeeping behavior of the different vessel stability parameters.
12

Real-Time Database Support for Distributed Real-Time Simulations

Brohede, Marcus January 2001 (has links)
Simulation is a good way to gain insight into a system, for example during development, without having to run or build the actual system. This is especially true for real-time systems, which often operate in hazardous environments or control critical entities in the 'real' world, making testing of these systems in their real environment unsafe during development. When building simulations, one simulator is not likely to fit every type of simulation project. Therefore, different simulators, which focus on different aspects of simulation, are built. The High Level Architecture (HLA) from the Defense Modeling and Simulation Office (DMSO) is an architecture for distributed simulations providing a means to communicate between different simulations. However, the HLA standard has limitations if viewed from a real-time perspective. For example, there is no built-in support for fault tolerance. In this thesis some of the limitations in HLA are identified and an extended architecture that uses a distributed active real-time database as a way to overcome these limitations is presented. One of the major advantages with this new extended HLA architecture is that it is still compliant with HLA, i.e., no modifications have been made to the HLA interfaces.
13

The Integration of LlamaOS for Fine-Grained Parallel Simulation

Gideon, John 21 October 2013 (has links)
No description available.
14

Definition, analysis, and an approach for discrete-event simulation model interoperability

Wu, Tai-Chi, January 2005 (has links)
Thesis (Ph.D.) -- Mississippi State University. Department of Industrial and Systems Engineering. / Title from title screen. Includes bibliographical references.
15

Numerical Analysis of a Floating Harbor System and Comparison with Experimental Results

Kang, Heonyong 2010 May 1900 (has links)
As a comparative study, the global performance of two cases for a floating harbor system are researched by numerical analysis and compared with results from experiments: one is a two-body case such that a floating quay is placed next to a fixed quay, a normal harbor, and the other is a three-body case such that a container ship is posed in the middle of the floating quay and the fixed quay. The numerical modeling is built based on the experimental cases. Mooring system used in the experiments is simplified to sets of linear springs, and gaps between adjacent bodies are remarkably narrow as 1.3m~1.6m with reference to large scales of the floating structures; a water plane of the fixed quay is 480m×160m, and the ship is 15000 TEU (twenty-foot equivalent unit) class. With the experiment-based models, numerical analysis is implemented on two domains: frequency domain using a three dimensional constant panel method, WAMIT, and time domain using a coupled dynamic analysis program of moored floating structures, CHARM3D/HARP. Following general processes of the two main tools, additional two calibrations are implemented if necessary: revision of external stiffness and estimation of damping coefficients. The revision of the external stiffness is conducted to match natural frequency of the simulation with that of the experiment; to find out natural frequencies RAO comparison is used. The next, estimation of damping coefficients is carried out on time domain to match the responses of the simulation with those of the experiment. After optimization of the numerical analysis, a set of experimental results from regular wave tests is compared with RAO on frequency domain, and results from an irregular wave test of the experiment are compared with response histories of simulation on time domain. In addition, fender forces are compared between the simulation and experiment. Based on response histories relative motions of the floating quay and container ship are compared. And the floating harbor system, the three-body case, is compared with a conventional harbor system, a fixed quay on the portside of the container ship, in terms of motions of the container ship. As an additional simulation, the three-body case is investigated on an operating sea state condition. From the present research, the experimental results are well matched with the numerical results obtained from the simulation tools optimized to the experiments. In addition, the floating harbor system show more stable motions of the container ship than the conventional harbor system, and the floating harbor system in the operating sea state condition have motions even smaller enough to operate in term of relative motions between the floating quay and the container ship.
16

Reliability Cost Model Design and Worth Analysis for Distribution System Planning

Yang, Chin-Der 29 May 2002 (has links)
Reliability worth analysis is an important tool for distribution systems planning and operations. The interruption cost model used in the analysis directly affects the accuracy of the reliability worth evaluation. In this dissertation, the reliability worth analysis was dealt with two interruption cost models including an average or aggregated model (AAM), and a probabilistic distribution model (PDM) in two phases. In the first phase, the dissertation presents a reliability cost model based AAM for distribution system planning. The reliability cost model has been derived as a linear function of line flows for evaluating the outages. The objective is to minimize the total cost including the outage cost, feeder resistive loss, and fixed investment cost. The Evolutionary Programming (EP) was used to solve the very complicated mixed-integer, highly non-linear, and non-differential problem. A real distribution network was modeled as the sample system for tests. There is also a higher opportunity to obtain the global optimum during the EP process. In the second phase, the interruption cost model PDM was proposed by using the radial basis function (RBF) neural network with orthogonal least-squares (OLS) learning method. The residential and industrial interruption costs in PDM were integrated by the proposed neural network technique. A Monte-Carlo time sequential simulation technique was adopted for worth assessment. The technique is tested by evaluating the reliability worth of a Taipower system for the installation of disconnected switches, lateral fuses, transformers and alternative supplies. The results show that the two cost models result in very different interruption costs, and PDM may be more realistic in modeling the system.
17

Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

January 2017 (has links)
abstract: In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, µ synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using H infinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
18

Evaluation of bus terminals using microscopic traffic simulation

Askerud, Caroline, Wall, Sara January 2017 (has links)
Traffic simulation is a safe and efficient tool to investigate infrastructural changes as well as traffic conditions. This master thesis aims to analyse a microscopic traffic simulation method for evaluation of bus terminal capacity. The evaluation is performed by investigating a case study of the bus terminal at Norrköping travel centre. The analysed method, referred to as terminal logic in the thesis, uses a combination of time based and event based simulation. Through the combination of time and event, it is possible to capture all movements within the terminal for individual vehicles. The simulation model is built in the software Vissim. A new travel centre for Norrköping is under development. Among the reasons for a new travel centre is the railway project Ostlänken in the eastern part of Sweden. An evaluation of the bus terminal is interesting due to a suspicion of overcapacity and the opportunity of redesigning. To investigate both the terminal capacity and the terminal logic, three scenarios were implemented. Scenario 1: Current design and frequency Scenario 2: Current design with higher frequency Scenario 3: Decreased number of bus stops with current frequency The results from the scenarios confirm the assumption of overcapacity. The capacity was evaluated based on several different measures, all indicating a low utilization. Even so, the utilization was uneven over time and congestion could still occur when several buses departed at the same time. This was also seen when studying the simulation, which showed congestions when several buses departed at the same time. The case study established the terminal logic to be useful when evaluating capacity at bus terminals. It provides a good understanding of how the terminal operates and captures the movements. However, it was time-consuming to adjust the logic to the studied terminal. This is a disadvantage when investigating more than one alternative. The thesis resulted in two main conclusions. Firstly, a more optimised planning of the buses at Norrköping bus terminal would probably be achievable and lead to less congestions at the exits. Secondly, the terminal logic is a good method to use when evaluating bus terminals but it is not straight forward to implement.
19

Komunikační protokoly v pasivních optických sítích / Communication protocols in passive optical networks

Ševela, Martin January 2011 (has links)
This master´s thesis explores a comparison of the transmission parameters in time division networks and wavelength division networks. The paper is divided into the three sections. The first part deals with preparation of individual standards time division networks and specific wavelength division networks, along with passive components used passive optical networks. The second part briefly describes the possibility of transmission of television signals in optical networks and the last part is devoted to simulating networks GPON and WDM-PON and comparison simulated values.
20

Mac Layer And Routing Protocols For Wireless Ad Hoc Networks With Asymmetric Links And Performance Evaluation Studies

Wang, Guoqiang 01 January 2007 (has links)
In a heterogeneous mobile ad hoc network (MANET), assorted devices with different computation and communication capabilities co-exist. In this thesis, we consider the case when the nodes of a MANET have various degrees of mobility and range, and the communication links are asymmetric. Many routing protocols for ad hoc networks routinely assume that all communication links are symmetric, if node A can hear node B and node B can also hear node A. Most current MAC layer protocols are unable to exploit the asymmetric links present in a network, thus leading to an inefficient overall bandwidth utilization, or, in the worst case, to lack of connectivity. To exploit the asymmetric links, the protocols must deal with the asymmetry of the path from a source node to a destination node which affects either the delivery of the original packets, or the paths taken by acknowledgments, or both. Furthermore, the problem of hidden nodes requires a more careful analysis in the case of asymmetric links. MAC layer and routing protocols for ad hoc networks with asymmetric links require a rigorous performance analysis. Analytical models are usually unable to provide even approximate solutions to questions such as end-to-end delay, packet loss ratio, throughput, etc. Traditional simulation techniques for large-scale wireless networks require vast amounts of storage and computing cycles rarely available on single computing systems. In our search for an effective solution to study the performance of wireless networks we investigate the time-parallel simulation. Time-parallel simulation has received significant attention in the past. The advantages, as well as, the theoretical and practical limitations of time-parallel simulation have been extensively researched for many applications when the complexity of the models involved severely limits the applicability of analytical studies and is unfeasible with traditional simulation techniques. Our goal is to study the behavior of large systems consisting of possibly thousands of nodes over extended periods of time and obtain results efficiently, and time-parallel simulation enables us to achieve this objective. We conclude that MAC layer and routing protocols capable of using asymmetric links are more complex than traditional ones, but can improve the connectivity, and provide better performance. We are confident that approximate results for various performance metrics of wireless networks obtained using time-parallel simulation are sufficiently accurate and able to provide the necessary insight into the inner workings of the protocols.

Page generated in 0.1191 seconds