• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 298
  • 76
  • 41
  • 34
  • 33
  • 15
  • 8
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 613
  • 613
  • 209
  • 157
  • 154
  • 115
  • 84
  • 79
  • 77
  • 64
  • 58
  • 53
  • 51
  • 47
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Modelling, simulation and experimental observation of wave propagation on VLSI interconnects.

January 1997 (has links)
by Yuen-Pat Lau. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 127-[129]). / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- VLSI Interconnects in Circuits --- p.1 / Chapter 1.2 --- Propagating Waves on Interconnects --- p.4 / Chapter 2 --- Theory: FDTD --- p.6 / Chapter 2.1 --- Modelling Microstrips in FDTD Mesh Space --- p.6 / Chapter 2.2 --- FDTD Implementation of a Unit Cell --- p.8 / Chapter 2.3 --- FDTD Implementation of a Lumped Element --- p.12 / Chapter 2.4 --- FDTD Implementation of a Circuit --- p.14 / Chapter 3 --- Theory: TDMS --- p.20 / Chapter 3.1 --- FDTD Circuit Simulation --- p.20 / Chapter 3.2 --- TDMS: Microstrip Characterization --- p.22 / Chapter 3.3 --- TDMS: Parameter Extraction --- p.23 / Chapter 3.4 --- TDMS: Circuit Simulation --- p.26 / Chapter 4 --- TDMS Simulations --- p.30 / Chapter 4.1 --- Example One: Loaded Diode --- p.30 / Chapter 4.2 --- Example Two: Unbalanced Mixer --- p.38 / Chapter 5 --- TDR Experiments --- p.54 / Chapter 5.1 --- Example Three: Uniform Microstrip --- p.54 / Chapter 5.2 --- Example Four: Coupled Microstrip --- p.61 / Chapter 5.3 --- Example Five: Change-in-width Microstrip --- p.67 / Chapter 6 --- Conclusion --- p.78 / Chapter 7 --- Program Listing --- p.80 / Chapter 7.1 --- Example Two: Unbalanced Mixer --- p.80 / Chapter 7.2 --- Example Five: Change-in-width Microstrip --- p.110 / Bibliography --- p.127
172

Terahertz frequency analysis of gaseous and solid samples using terahertz time-domain spectroscopy

Smith, Ryan Michael 01 July 2012 (has links)
Developments in semiconductor and laser technologies have facilitated development of terahertz (THz)-frequency (˜2-200 cm-1) technologies. Results published in the literature as far back as the early 20th century demonstrate the utility of this frequency range for myriad applications, but the improved performance of modern THz technologies has renewed interest in THz-frequency analysis. Material presented in this dissertation focuses on three applications of terahertz time-domain spectroscopy (THz-TDS): quantitation of gas-phase molecular species, analysis of polymeric materials, and investigation of dental tissue/composite structures. Gas phase species were quantified individually at concentrations ranging from several parts per million to several parts per thousand using various chemometric methods. Quantitative model robustness was evaluated by comparison of model precision, and partial least-squares (PLS) regressions provided the greatest precision. Species were quantified in mixtures using PLS with errors of prediction below the permissible exposure limits (PELs) set by the Occupational Safety and Health Administration. The effect of spectral broadening as a result of overall sample pressure was investigated, and species were analyzed in mixtures at various overall pressures. Errors of prediction were again near or below the PELs, demonstrating the utility of this method for atmospheric analysis. Chemical selectivity available in THz spectral features was evaluated and compared to selectivity available in infrared frequencies. Spectral parameters measured in the THz frequency range also provide insight into structural properties of polymeric materials. In some cases, spectral peaks may be used to identify the temperature at which phase changes occur within these materials. THz refractive index spectra were found to be a sensitive and non-destructive tool for identification of phase transition temperatures. The time-resolved measurement of THz-TDS makes it particularly useful for rapid, non-destructive analysis of layered structures. Ordinarily, the strength of bonds between dental tissues and composite materials are evaluated in the laboratory using destructive failure analyses. Transparency of dental tissues and composite materials used for restorative procedures to THz pulses allows investigation of interfaces between these materials. Refractive index spectra indicate locations in which delamination has occurred between bonded layers. These results provide an overview of unique capabilities of the THz-TDS method in real-life spectral analyses.
173

Behavioral VHDL Implementation of Coherent Digital GPS Signal Receiver

Daita, Viswanath 01 November 2004 (has links)
Global Positioning System is a technology which is gaining acceptance. Originally developed for military purposes, it is being used in civilian applications such as navigation, emergency services, etc. A system-on-chip application merges different functions and applications on a single substrate. This project models a GPS receiver for a system on chip application. The GPS receiver, developed as a core, is intended to be a part of a navigation tour guide being developed. The scope of this work is the GPS C/A code on the L1 carrier. The digital signal processing back-end in a GPS receiver is modelled in this work. VHDL modeling of various communiation sub-blocks, detection and demodulation schemes is done. A coherent demodulation of the GPS signals is implemented. GPS receiver calculates the position based on the data collected from four satellites. Given four satellites, acquisition of the data from the signals is performed and data demodulated from the same. Synthetic data is generated for validation purposes. Code acuqisition and tracking of the GPS C/A signal is implemented. Cadence NC-Launch VHDL simulator is used to validated the behavioral VHDL model.
174

Quantitative Characterisation of Airborne Electromagnetic Systems

Davis, Aaron Charles, aaron.davis@rmit.edu.au January 2007 (has links)
I address the geometric problem of the pendulum-like swinging of towed birds for AEM platforms. I establish a link between actual observed bird swing and its effect on survey data for two different systems and explain the link by a model that compares actual survey data to the calculated mutual inductance coupling of a dipole pair over an infinitely conductive half space, which pair is permitted arbitrary pitch, roll and altitude changes. I develop a non-linear filter that removes bird swing effects from survey data which successfully corrected data from 3 different AEM surveys. Calibration of several different time domain AEM systems is attempted using an accurately laid out and surveyed, closed, multi-turn loop of known resistance and self-inductance that is placed on - but insulated from - resistive ground. I derive a rigourous mathematical model that predicts airborne receiver's response to the coupling to the transmitter current waveform and total system geometry. The method was proven to be successful over resistive ground, with significant system problems identified such as: altimetry error, spatial averaging of data during postprocessing, error in the predicted horizontal position of the AEM platform, receiver windowing and timing errors and bird swing. I show that, although we can calibrate a time domain AEM system for a single flyover, it is impossible to calibrate an AEM system for geometry. As an intermediate step in the calibration process, I show that by monitoring the current induced in the ground loop we can obtain the waveform of the AEM transmitter current throu gh deconvolution in the Fourier domain. Simple and cost effective methods for the improvement of quantitative AEM data are presented in this thesis. However, until the geometry problem of AEM platforms is solved, full system calibration will not be obtained and filters will need to be applied to the data. I recommend the use of: GPS antennas mounted on all towed birds, able to be post-processed for accurate position recovery, reliable bird-mounted scanning altimeters that do not rely on range-finding technology but instead employ a shortest path algorithm, pitch and roll sensors mounted on the trailed bird and the measurement of airspeed of both the towed bird and the aircraft during surveys.
175

Photonic Crystal Designs (PCD)

Khan, Adnan daud, Noman, Muhammad Unknown Date (has links)
<p>Photonic Crystal (PC) devices are the most exciting advancement in the field of photonics. The use of computational techniques has made considerable improvements in photonic crystals design. We present here an ultrahigh quality factor (Q) photonic crystal slab nanocavity formed by the local width modulation of a line defect. We show that only shifting two holes away from a line defect is enough to attain an ultrahigh Q value. We simulated this double heterostructure nano cavity by using Finite Difference Time Domain (FDTD) technique. We observed that photonic crystal cavities are very sensitive to the frequency, size and position of the source. So we must choose the right values for these parameters.</p>
176

Modeling of planing craft in waves

Garme, Karl January 2004 (has links)
Simulation of the planing hull in waves has been addressed during the last 25 years and basically been approached by strip methods. This work follows that tradition and describes a time-domain strip model for simulation of the planing hull in waves. The actual fluid mechanical problem is simplified through the strip approach. The load distribution acting on the hull is approximated by determining the section load at a number of hull sections, strips. The section-wise 2-dimensional calculations are expressed in terms of added mass coefficients and used in the formulations of both inertia and excitation forces in the equations of motions. The modeling approach starts from the hypothetic assumption that the transient conditions can be modeled based on those section-wise calculations. The equation of motion is solved in the time-domain. The equation is up-dated at each time step and every iteration step with respect to the momentary distribution of section draught and relative incident velocity between the hull and water and catches the characteristic non-linear behavior of the planing craft in waves. The model follows the principles of the pioneering work of E. E. Zarnick differing on model structure and in details such as the modeling of the lift in the transom area. A major part of the work is concerned with experiments and evaluation of simulations with respect to performed model tests and to published experiment data. Simulations of model tests have been performed and comparisons have been made between measured and simulated time series. The link between simulation and experiment is a wave model which is based on a wave height measurement signal. It is developed and evaluated in the thesis. The conclusions are in favor of the 2-dimensional approach to modeling the conditions for the planing hull in waves and among further studies is evaluation of simulated loads and motions to full-scale trial measurement data.
177

Rapid measurements of the moisture content in biofuel

Nyström, Jenny January 2006 (has links)
An increasing number of power plants in Scandinavia are beginning to use biofuel instead of coal or oil. The material in the new fuel is a mixture of woodchips, mostly Pine, Spruce and Salix, bark, GROT (tops and branches from felling waste) and sawdust from sawmills. It is heterogeneous, having a moisture content varying from 15% up to 65%. The moisture content affects the combustion of the fuel and therefore its commercial value. The industry is now interested in obtaining a method for measuring the moisture content of biofuel, quickly and reliably; preferably on delivery at the power plant. The measuring technique presented in this thesis is the first reported in the literature capable of measuring the moisture content of a large sample of such an heterogeneous material as biofuel. The equipment is today calibrated for a sample volume of 0.1 m3. A radio frequent signal is supplied from an antenna and penetrates the biofuel. Its reflection is modeled using partial least squares. As part of the work presented in this thesis, a new type of measuring rig and an analysis method for measurement of the moisture content of large samples of heterogeneous material have been developed. A statistical model for moisture content measurements of five different biofuel materials using radio waves has been built, having a root mean square error of prediction of 2.7. The interactions between biofuels and radio frequent signals have been demonstrated, indicating a variation of the reflection with varying types of biofuel material and variation in the reflection and delay of the signal with varying moisture content.
178

Frequency Domain Identification of Continuous-Time Systems : Reconstruction and Robustness

Gillberg, Jonas January 2006 (has links)
Approaching parameter estimation from the discrete-time domain is the dominating paradigm in system identification. Identification of continuous-time models on the other hand is motivated by the fact that modelling of physical systems often take place in continuous-time. For many practical applications there is also a genuine interest in the parameters connected to these physical models. The most important element of time- and frequency-domain identification from sampled data is the discrete-time system, which is connected to the parameters of the underlying continuous-time system. For input-output models, it governs the frequency response from the sampled input to the sampled output. In case of time series, it models the spectrum of the sampled output. As the rate of sampling increase, the relationship between the discrete- and continuous-time parameters can become more or less ill-conditioned. Mainly, because the gathering of the poles of the discrete-time system around the value 1 in the complex plane will produce numerical difficulties while mapping back to the continuous-time parameters. We will therefore investigate robust alternatives to using the exact discrete-time system, which are based on more direct use of the continuous-time system. Another, maybe more important, reason for studying such approximations is that they will provide insight into how one can deal with non-uniformly sampled data. An equally important issue in system identification is the effect of model choice. The user might not know a lot about the system to begin with. Often, the model will only capture a particular aspect of the data which the user is interested in. Deviations can, for instance, be due to mis-readings while taking measurements or un-modelled dynamics in the case of dynamical systems. They can also be caused by misunderstandings about the continuous-time signal that underlies sampled data. From a user perspective, it is important to be able to control how and to what extent these un-modelled aspects influence the quality of the intended model. The classical way of reducing the effect of modelling errors in statistics, signal processing and identification in the time-domain is to introduce a robust norm into the criterion function of the method. The thesis contains results which quantify the effect of broad-band disturbances on the quality of frequency-domain parameter estimates. It also contains methods to reduce the effect of narrow-band disturbances or frequency domain outliers on frequency-domain parameter estimates by means of methods from robust statistics.
179

Using PIC Method To Predict Transport Processes Near A Surface In Contact With Plasma In Electromagnetic Field

Kuo, Yueh-lin 21 August 2007 (has links)
This study uses the PIC (Particle-in-cell) method to simulate unsteady three-dimensional dynamics of particles in argon plasma under low pressure, high density, and weak ionization between two planar electrodes subject to a sudden biased voltage. Plasma has been widely used in materials processing, film manufacturing, nuclear fusion, lamps, etc. Properties of plasmas are also becoming important area for research. This work includes elastic collisions between electrons and neutrals, ions and neutrals, and inelastic collisions resulting in ionization from impacting neutrals by electrons, and charge exchange between ions and neutrals, and Coulomb collisions between electrons and ions. The model ignores secondary electron emission, recombination between ions and electrons, and assumes uniform distribution of the neutrals having velocity of Maxwellian distribution. The computed results show the effects of elastic and inelastic collisions on the characteristics of plasma and sheath (space charge region) in front of the workpiece surface. Unsteady mass, momentum and energy transport from the bulk plasma through sheath to the workpiece is confirmatively and exploratorily studied after successful comparison between PIC prediction and experimental data has been made.
180

Compact silicon diffractive sensor: design, fabrication, and functional demonstration

Maikisch, Jonathan Stephen 06 November 2012 (has links)
The primary objective of the presented research is to develop a class of integrated compact silicon diffractive sensors (CSDS) based on in-plane diffraction gratings. This class of sensors uses a silicon-on-insulator (SOI) substrate to limit costs, exploit established fabrication processes, enable integration of supporting electronics, and use the well-understood telecommunications wavelength of 1.55µm. Sensing is achieved by combining constant-diffraction-efficiency and highly-angularly-selective in-plane resonance-domain diffraction gratings. Detection is based on the diffraction efficiency of the highly angularly selective grating. In this research, the design processes for the constant-diffraction-efficiency and the highly angularly selective gratings are detailed. Grating designs are optimized with rigorous coupled-wave analysis (RCWA) and simulated with finite-difference time-domain (FDTD) analysis. Fabrication results are presented for the CSDS gratings. An inductively coupled plasma (ICP) Bosch etch process enables grating fabrication to within one percent of designed values with nearly vertical sidewalls. Experimental results are presented for individual CSDS gratings, the prototype sensor, and a prototype linear sensor array. The results agree well with simulation. The linear sensor array prototype demonstrates the intrinsic splitting mechanism and forms the basis of a 2-D sensor array. Finally, a toluene sensor was functionally demonstrated. The proof-of-concept device includes a polymer immobilization layer and microfluidic delivery of toluene. Toluene concentrations as low as 100ppm are measured, corresponding to a refractive index change of 3x10⁻⁴ RIU.

Page generated in 0.042 seconds