31 |
On the Fracture of Thin LaminatesKao-Walter, Sharon January 2004 (has links)
This thesis concerns mechanical and fracture properties of a thin aluminium foil and polymer laminate that is widely used as packaging material. The possibility of controlling the path of the growing crack propagation by adjustment of the adhesion level and the property of the polymer layer is investigated. First, the fracture process of the aluminium foil is investigated experimentally. It is found that fracture occurs at a much lower load than what is suggested by standard handbook fracture toughness. Observations in a scanning electron microscope with a tensile stage show that small-scale stable crack growth occurs before the stress intensity factor reaches its maximum. An examination using an optical profilometric method shows almost no plastic deformation except for in a small necking region at the crack tip. However, accurate predictions of the maximum load are obtained using a strip yield model with a geometric correction. Secondly, the mechanical and fracture properties of the laminate are studied. A theory for the mechanics of the composite material is used to evaluate a series of experiments. Each of the layers forming the laminate is first tested separately. The results are analysed and compared with the test results of the entire laminate with varied adhesion. The results show that tensile strength and strain at peak stress of the laminate, with or without a crack, increase when the adhesion of the adhesive increases. It is also found that a much larger amount of energy is consumed in the laminated material at tension compare with the single layers. Possible explanations for the much higher toughness of the laminate are discussed. Finally, the behaviour of a crack in one of the layers, perpendicular to the bimaterial interface in a finite solid, is studied by formulating a dislocation superposition method. The stress field is investigated in detail and a so-called T stress effect is considered. Furthermore, the crack tip driving forces are computed numerically. The results show that the analytical methods for an asymptotically small crack extension can also be applied for a fairly large amount of crack growth. By comparing the crack tip driving force of the crack deflected into the interface with that of the crack penetrating into the polymer layer, it is shown how the path of the crack can be controlled by selecting a proper adhesion level of the interface for different material combinations of the laminate.
|
32 |
Tip-over stability analysis of crawler cranes in heavy lifting applicationsRishmawi, Sima 27 May 2016 (has links)
Cranes are often the most conspicuous machines on a construction site. This is due to their large size, in addition to the important role they have in transporting heavy payloads vertically and horizontally. There are two major families of construction cranes: tower cranes and mobile cranes. Mobile cranes that are mounted on tracks are a subgroup referred to as ``crawler cranes''. Crawler cranes are widely used on construction sites, and are a backbone of the United States construction industry, thus a detailed study of these cranes' behavior is essential. This research studies the tip-over stability of crawler cranes in heavy-lifting applications. Two major applications are discussed: crawler cranes using movable counterweights and crawler cranes in tandem lifting.
|
33 |
Syntheses of novel bis(alkylimino)acenaphthene (BIAN) and tetrakis(arylimino)pyracene (TIP) ligands and studies of their redox chemistryVasudevan, Kalyan Vikram 06 August 2010 (has links)
The evolution of the present work began with the syntheses of novel bis(alkylimino)acenaphthene (BIAN) ligands. At the outset of this research, despite the presence of dozens of aryl-BIAN ligands in the literature, there were as of yet no reported BIAN ligands bearing alkyl substituents. Given the nearly ubiquitous use of transition metal complexes of alkyl diazabutadiene (DAB) ligands for e.g. catalysis and as ligands for carbene chemistry, interest was generated in developing this emerging field of synthetic chemistry. Initial studies focused on the synthesis of alkyl-BIAN ligands since the traditional synthetic approaches that had been developed for aryl-BIAN ligands were unsuccessful for the alkyl analogues. As an alternate synthetic route, it was decided to employ amino- and imino-alane transfer reagents which had previously proved successful for the conversion of C=O into C=N-R functionalities. While this transfer route had proved successful to synthesize moderate yields of highly fluorinated DAB ligands, it was unknown how or whether this methodology would apply in the case of alkylated BIAN systems.
Over the past decade, there has been a surge of interest regarding lanthanide complexes that are capable of undergoing spontaneous electron transfer processes. There are several reports in the literature that describe the ability of Ln(II) ions to undergo spontaneous oxidation, thereby causing one-electron reduction of the coordinated ligand and generally resulting in the corresponding Ln(III) complex. The present work focused on an enhanced understanding of the electronic communication between the lanthanide and the attached ligand. Particular emphasis was placed on defining the resulting oxidation states and the manner in which delocalized electrons of the radical anion species travel over a conjugated system. This fundamental information was gleaned from single-crystal X-ray diffraction studies and magnetic moment measurements that were obtained using the Evans method. Additional insights stemmed from the use of more classical techniques such as IR and NMR spectroscopy. In favorable cases, the presence or absence of spectral peaks can permit assignment of the lanthanide oxidation state. Accordingly, the research plan was to synthesize a series of BIAN-supported decamethyllanthanocene complexes with the goal of learning how to control the spontaneous charge transfer that had been reported in the literature.
A longer term goal was to develop a bifunctional ligand of the BIAN type that was capable of accommodating two lanthanide or main group element moieties. Systems with tunable electronic interactions between lanthanide or main group elements are of interest because they offer the prospect of extended delocalization of electron density. Systems of this type have potential applications as e.g. molecular wires and single-molecule magnets. Indeed, such systems have been investigated by using bis(bipyridyl) and bis(terpyridyl) ligands to support two redox-active moieties. However, in the present work, it was recognized that a bifunctional BIAN-type ligand might be of considerable interest as the supporting structure for studying the communication between lanthanide or main group element moieties. A synthesis of variously substituted tetrakis(imino)pyracene (TIP) ligands was therefore undertaken. The flat, rigid nature of the TIP ligands rendered them ideal scaffolds for studying the redox behavior and electronic communication between lanthanide or main group element centers. The new TIP ligand class also proved to be useful for the assembly of the first example of a metallopolymer based on a BIAN-type ligand. / text
|
34 |
F-actin and integrin like proteins in Phytophthora cinnamomiHarland, Chad S. January 2007 (has links)
Tip growth is the primary form of growth in hyphal organisms and some plant cells. Tip growth in hyphae is highly dependent on F-actin, which acts to regulate and support growth. One of the models suggested for tip growth, the amebae model of tip growth, suggests that F-actin may also be the primary source of protrusive force for tip growth in some conditions, and that proteins with a similar function to animal integrins would be present an involved in tip growth (Heath and Steinberg 1999). In this thesis we examine the role of F-actin in the growth of the oomycete Phytophthora cinnamomi and the effects on growth of the F-actin disrupting compound Latrunculin B. We demonstrate that F-actin plays a critical role in the tip growth of Phytophthora cinnamomi with it's disruption causing rapid cessation in directional growth, followed by significant subapical swelling. Further more we examine Phytophthora cinnamomi for the presence of an B4 integrin like protein that has been previously reported in the oomycete Achlya bisexualis (Chitcholtan & Garrill 2005) and show that the B4 integrin like protein is not present in Phytophthora cinnamomi. These experiments help further our understanding of tip growth in Phytophthora cinnamomi an economically important plant pathogen.
|
35 |
The Role of Actin in Hyphal Tip GrowthSuei, Sandy H.Y. January 2008 (has links)
This thesis investigates whether there are alternative mechanisms of tip growth in invasive and non-invasive hyphae of the fungus Neurospora crassa. The cytoskeleton protein actin is thought to play a pivotal role in hyphal tip growth, performing a multitude of tasks, one of which may be the provision of a resistive force to counter turgor pressure.
An Actin depleted zone (ADZ) was the dominant feature of invasive hyphal tips, which was largely absent from non-invasive hyphae. The Spitzenkörper was slightly larger in invasive hyphae but this size difference alone was thought insufficient to account for the exclusion of filamentous actin (F-actin) from the tip. The actin nucleating protein formin was found at sites where actin nucleation is occurring, while cofilin, a protein that severs F-actin, was found to localise where F-actin disassembly was likely to be occurring. It is suggested that these proteins are likely to play a role in controlling a dynamic cytoskeleton, rearrangements of which are required for the two modes of growth. Invasive hyphae were found to generate a higher turgor than non-invasive hyphae.
These results suggest that the F-actin rearrangements facilitated by cofilin give an ADZ that may play a role in invasive hyphal tip growth; possibly through a reduction of tip resistance; thus enabling the provision of a greater protrusive force by turgor.
|
36 |
Stable tearing characterization of three materials with three methodsJohnston, Elizabeth Nicole January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Kevin Lease / Over the past several years the crack tip opening angle (CTOA) has been identified as one of the key fracture parameters to characterize low constraint stable tearing and instability in structural metallic alloys. This document presents the results of experimental stable tearing characterizations. Characterization methods include optical microscopy and marker band measurements of crack front tunneling. Specific attention is given to the measurement methods used, and also the correlation between CTOA and Delta-5. The effect of tunneling and comparisons with computational results are discussed, and the effect of material and measurement method on CTOA is observed and a clear relationship is seen. Preliminary work on future studies into internal features and behavior is also presented.
|
37 |
Atomic force microscopy studies of thermal, mechanical and velocity dependent wear of thin polymer filmsRice, Reginald H. January 1900 (has links)
Master of Science / Department of Physics / Robert Szoszkiewicz / Nanoscale modifications of polymer surfaces by scratching them with sharp tips with curvature radii of tens of nanometers and at variable temperatures are expected to provide wealth of information characterizing wear response of these polymers. Such studies are important in the light of understanding the nanoscale behavior of matter for future applications in advanced polymer coatings.
This thesis describes how Atomic Force Microscopy (AFM) and hot-tip AFM (HT-AFM) methods were used to characterize thermal and mechanical properties of a 30 nm thick film of poly(styrene-block-ethylene oxide), PS-b-PEO, and modify its lamellar surface patterns. Additionally, it is revealed how contact AFM and HT-AFM methods can efficiently characterize the wear response of two popular polymer surfaces, poly(methyl methacrylate), PMMA, and polystyrene, PS.
The AFM and HT-AFM studies on PS-b-PEO copolymer were aimed at producing spatial alignment of respective PS and PEO parts. Instead, however, surface ripples were obtained. These measurements are explained using mode I crack propagation model and stick-and-slip behavior of an AFM tip. In addition, HT-AFM studies allowed extraction of several thermo-physical properties of a PS-b-PEO film at local volumes containing about 30 attograms of a polymer. These thermo-physical quantities are: PEO melting enthalpy of, 111 ± 88 J g[superscript]-1, PS-b-PEO local specific heat of 3.6 ± 2.7 J g[superscript]-1K[superscript]-1, and molecular free energy of Helmholtz of 10[superscript]-20 J nm[superscript]-2 for the PEO within PS-b-PEO.
Utilizing a spiral scan pattern at constant angular speed and at various temperatures at the AFM tip-polymer interfaces, the wear response of PS and PMMA polymers was characterized. Cross-sections along the obtained spiral wear patterns provided plots of polymer corrugation as a function of scanning speed. From these studies it was found that the corrugation of the modified polymer surface decays exponentially with linear velocity of the scanning tip.
|
38 |
Biologically Inspired Wing Tip Geometry OptimizationMarinelli, Andrea T 11 May 2010 (has links)
Wingtip vortices are an important problem in aerodynamic and hydrodynamic engineering because of their contribution to induced drag, tip cavitation, and wake turbulence. These effects decrease equipment efficiency and lifespan, which increases application costs. Biology provides an inspiring solution to this problem in avian flight through the spreading of primary feathers. Previous studies have shown increased lift to drag ratio and efficiency of wings and propeller blades through modified wingtip geometry. The goal of this project is to optimize the tip geometry (primary feather angle) of a test wing for minimal tip vortex strength using genetic algorithms to mimic natural design evolution. Ultrasonic transducers are used to measure the wing tip vortex circulation in wind tunnel tests for each candidate design. Although neither angle of attack series converged completely, there was partial convergence in each. Due to the fluctuations in the low angle of attack tests, the parent selection algorithm was altered for the high angle of attack series, which resulted in improved convergence trends. A genetic algorithm that used uniform crossover breeding, a 20% mutation rate, and roulette wheel parent selection methods was used to generate an improved tip geometry at a low angle of attack of 6° and a freestream velocity of 15.25 m/s over the course of 17 generations. This improved design consisted of three key features, a staggered leading edge, a drastic mid-section vertical separation, and an upswept trailing edge. A second algorithm, which employed uniform crossover, a 20% mutation rate, and an elitist selection roulette parent selection, provided an improved tip geometry for a 12° angle of attack at a freestream velocity of 11.5 m/s. This improved design consisted of three key features, a downswept leading edge, a drastic mid-section vertical separation, and an upturned trailing edge. Both results showed that the wing tip vortex strength can be reduced by approximately 20% by manipulating tip geometry and that the trailing edge traits produce the most prominent effects on vortex strength.
|
39 |
A Cephalometric Comparison of Class II Extraction Cases Treated with Tip-Edge and Edgewise TechniquesNgema, Maureen Nkosazana January 2012 (has links)
Magister Scientiae Dentium - MSc(Dent) / The Tip-Edge and edgewise techniques are the main techniques that are mostly used in orthodontics, and are applicable to the treatment of any type of malocclusion from the most simple to the most complex. The edgewise bracket wire combination produces bodily tooth movement simultaneously or separately in all three planes of space and hence permits correction of the most extreme tooth malpositions. On the other hand Tip-Edge offers a differential tooth movement (just like the previously used Begg technique) within an edgewise based bracket
system (Parkhouse 2003). When treating patients using the Tip-Edge technique, it is recommended that a specialized archwire i.e. Australian stainless steel wire be used. This wire can be described as a round austenitic stainless steel wire that is heat-treated and cold-drawn to its proper diameter. This was done in order to produce its special and needed properties such as toughness, resiliency and tensile strength (Kesling, 1985). It is used in conjunction with light (2oz) class II elastics. The aim of this study was to compare cephalometric changes in skeletal and dento-alveolar parameters in cases treated by these two different orthodontic techniques. This was to be established by calculating and comparing the pre- and post-treatment cephalometric variables of cases treated with these techniques by looking at the skeletal and dento-alveolar measurements. Thirty Tip-Edge and thirty edgewise treated cases that had class II malocclusion, had extraction of four premolars and were treated with Class II elastics were selected. The gender distribution between the Tip-Edge and the edgewise techniques were 47% and 60% respectively for females. For males it was 53% in Tip-Edge and 40% in the edgewise techniques.
|
40 |
Design and Evaluation of a Mobile Photo Gallery in TIPWang, Yi January 2007 (has links)
As a part of the Tourist Information Provider (TIP) system, this project focuses on creating a photo gallery service in the TIP system, which allows users to share, browse and categorize their photos. The core of this project is to provide users a location-based photo browsing. The system provides photos which are taken in the current user's location. We considered privacy control on photos that users uploaded. A photo owner is able to sign an access level to each of their photos and permit different users to access them. We also considered reusing resources. The system allows a user to use an URL of a photo in the system in stead of uploading the photo from the local computer. The system also provides a URL of each photo in order to use the photo on other web places, e.g., Blogs. We use tags and photo metadata Eixf to categorize photos.
|
Page generated in 0.0519 seconds