• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • Tagged with
  • 35
  • 35
  • 13
  • 11
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efeito da secção do nervo isquiático sobre parâmetros ultraestrutural, histoquímico, imunoistoquímico e de captação de análogos da glicose em gânglio da raiz dorsal de rãs Lithobates catesbianus

Rigon, Fabiana January 2013 (has links)
As rãs são utilizadas como modelos experimentais em diferentes situações experimentais. Uma delas é o estudo dos efeitos da seção do nervo isquiático (SNI) sobre o tecido nervoso. Essa ampla utilização desses animais como modelos experimentais justifica a realização de estudos que visam o conhecimento morfofuncional de seus tecidos. Inúmeros estudos mostram que, assim como nos mamíferos, o principal substrato energético no tecido nervoso de rãs é a glicose. Porém, é desconhecida a distribuição dos transportadores de glicose no tecido nervoso de rãs, bem como se a SNI altera esse transporte. Outra questão em aberto é se o lactato, cuja concentração está aumentada no plasma de rãs durante períodos de hibernação e após atividades motoras, é usado como substrato energético pelo tecido nervoso, o que está demonstrado em outras espécies de vertebrados. É desconhecida ainda no gânglio da raiz dorsal (GRD) de rãs a distribuição e os efeitos da SNT sobre a reação à nicotinamida adenina dinucleotídeo fosfato diaforase (NADPH-diaforase), enzima considerada equivalente a óxido nítrico sintase, responsável pela síntese de óxido nítrico, e a reação ao ácido periódico-reativo de Schiff (PAS), que indica a presença de mucopolissarídeos, incluindo o glicogênio, uma importante reserva energética no tecido nervoso de rãs. Desconhece-se também a distribuição e os efeitos da SNT sobre a imunorreatividade à serotonina, importante molécula com função neurotransmissora e/ou moduladora no sistema nervoso, tirosina hidroxilase, enzima limitante na síntese de catecolaminas, moléculas com diversos papéis fisiológicos, incluindo ação neurotransmissora e/ou neuromoduladora no tecido nervoso, e c-Fos, proteína considerada marcadora de ativação neural por estimulação nociva. Outras questões ainda em aberto são os efeitos da SNT sobre: a captação do análogo da glicose 1-14C 2-deoxi-D-glicose (14C-2-DG) e concentração plasmática de glicose e lactato; se os tipos II e III de células gliais satélites (CGSs), recentemente descritas no GRD de coelho, estão presentes nesse gânglio de rãs; e os efeitos da SNT sobre a ultraestrutura de CGSs e neurônios do GRD. Assim, o objetivo dessa tese foi determinar: 1) a ultraestrutura de neurônios e CGSs; 2) a distribuição das reações à NADPH-diaforase e PAS, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose tipo 1 e 3; e 3) a captação de 14C-2-DG, na presença e ausência de lactato, em GRD de rãs Lithobates catesbianus com e sem SNI. A escolha pelos transportadores de glicose tipos 1 e 3 foi pelo fato de ocorrerem na membrana de endotélio, células gliais e de neurônios. Para a realização do estudo inicialmente 12 rãs Lithobates catesbianus, adultas, machos, com peso de 100-200g, que não sofreram qualquer manipulação cirúrgica foram mortas por decapitação e os gânglios das raízes dorsais (GRDs) do nervo isquiático retirados e preparados para análises ultraestrutural, histoquímica à NADPH-diaforase e PAS, e imunoistoquímica à serotonina, tirosina hidroxilase e transportadores de glicose dos tipos 1 e 3. Feito isso, 18 outras rãs, nas mesmas condições físicas, foram divididas em três grupos experimentais (n=6/grupo): controle (rãs que não sofreram qualquer manipulação cirúrgica), sham (rãs onde foram efetuados apenas os procedimentos para isolamento do nervo isquiático) e SNI (rãs que tiveram o nervo isquiático direito totalmente seccionado em seu tronco comum). Esses animais foram mortos três dias após a intervenção cirúrgica e seus GRDs do nervo isquiático usados para demonstrar os efeitos da secção nervosa sobre a ultraestrutura, a reação à NADPH-diaforase, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose dos tipos 1 e 3 no GRD. Outros 20 animais, divididos nos mesmos grupos experimentais, foram usados para demonstrar os efeitos da SNI sobre a captação de 14C-2-DG, na presença ou ausência de lactato, e a taxa de produção de 14CO2 a partir de 14C-L-lactato e de 14C-glicose no GRD. Essas rãs foram usadas ainda para demonstrar os efeitos da denervação periférica sobre a concentração plasmática de glicose e lactato. Nossos resultados mostraram que os neurônios sensoriais do GRD de rã Lithobates catesbianus tiveram distribuição, diâmetro e morfologia que foi similar àquela descrita para essas células em gânglio de mamíferos. As CGSs apresentaram morfologia similar àquela descrita para essas células em gânglios de outras espécies de vertebrados. As células dos tipos II e III, observadas no GRD de coelho, não ocorreram no GRD de Lithobates catesbianus. O padrão de atividade à NADPH-diaforase e a distribuição da imunorreatividade à serotonina, tirosina hidroxilase e Glut 1 e 3 foram também similares ao descrito em mamíferos. Pela primeira vez foi demonstrada, em anfíbios, a presença de reação à NADPH-diaforase em CGCs do GRD. A captação de 14C-2-DG foi reduzida quando o lactato foi acrescentado ao meio de incubação. As alterações induzidas pela SNI foram também similares àquelas descritas nos mamíferos. Houve acréscimo no número de mitocôndrias, retículo endoplasmático, ribossomas e filamentos no citoplasma das CGSs, mais neurônios e CGCs com reação positiva à NADPH-diaforase, um maior número de prolongamentos imunorreativos à tirosina hidroxilase em torno de somas de neurônios sensoriais, e mais núcleos neuronais imunorreativos a c-Fos. Nenhuma alteração ocorreu na imunorreatividade a serotonina e transportadores de glicose. Houve aumento na captação de 14C-2-DG, que foi reduzido quando o lactato foi acrescentado ao meio de incubação. Porém, a formação de 14CO2 a partir de 14C-L-lactato e de 14C-glicose não alterou nessas condições. Todavia, diferentemente dos mamíferos, a SNI não provocou mudança no número de CGCs no GRD, mostrando uma peculiaridade na resposta das rãs à SNI. Assim, nosso estudo reforça o uso de rãs como modelo experimental para estudo dos efeitos da SNI, um modelo de dor fantasma, sobre o tecido nervoso. Porém, dada a diferença peculiar ocorrida no GRD de rãs com SNI, é evidente a necessidade de mais conhecimento dos efeitos dessa situação experimental nesses animais. / Frogs have been used as experimental models in different experimental situations. One of these is the study of the effects of the sciatic nerve transection (SNT) on the nerve tissue. The wide use of these animals as experimental models justifies the studies aimed at morphofunctionally understanding of their tissues. Numerous studies have shown that glucose is the main energy substrate in the nerve tissue of frogs as well as in mammals. However, the distribution of glucose transporters in the nerve tissue of frogs is unknown as well as whether SNT alters such transportation. Another unanswered question is whether the lactate, whose concentration is increased in the frog plasma during hibernation periods and after motor activities, is used as an energy substrate by the nerve tissue, which has been demonstrated in other vertebrate species. In the dorsal root ganglion (DRG) cells of frogs are still unknown the distribution and effects of SNT on the reaction of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase), an enzyme that is considered equivalent to nitric oxide synthase, responsible for the synthesis of nitric oxide, and on the reaction of periodic acid-Schiff (PAS), which indicates the presence of mucopolysaccharides, including glycogen, an important energy reserve in frog nerve tissue. Moreover, the distribution and effects of SNT on immunoreactivity to serotonin, an important molecule that functions as a neurotransmitter and / or neuromodulator in the nervous system, tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, molecules with various physiological roles, including neurotransmitter and / or neuromodulator action in the nerve tissue, and c-Fos, a protein that is regarded as a marker of neuronal activation by noxious stimulation are also unknown. Other questions regarding is the effect of SNT on the uptake of glucose analogue 2-Deoxy-D-glucose-1-14C (14C-2-DG) and glucose and lactate concentration plasma; whether the types II and III of satellite glial cells (SGCs), recently described in rabbit DRG, are present in this ganglion of frogs; and the effects of SNT on the ultrastructure of SGCs and DRG neurons remain unanswered as well. Thus, this thesis aimed to determine: 1) the ultrastructure of neurons and SGCs; 2) the distribution of NADPH-diaphorase and PAS reaction, and immunohistochemistry for serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3; and 3) the uptake of 2-DG-14C, in the presence and absence of lactate, in DRG of frogs, Lithobates catesbianus, with and without SNT. Glucose transporters types 1 and 3 were chosen because they occur in the membrane of endothelial cells, glial cells and neurons. Initially, 12 adult male frogs, Lithobates catesbianus, weighing 100-200g, not having undergone any previous surgical manipulation, were killed by decapitation. The DRGs of the sciatic nerve were removed and prepared for ultrastructural analysis, histochemistry of NADPH-diaphorase and PAS, and immunohistochemistry for serotonin, tyrosine hydroxylase and glucose transporters types 1 and 3. After that, 18 other frogs in the same physical conditions were divided into three experimental groups (n = 6/group): control group (frogs not subjected to any surgical manipulation), sham (frogs in which only surgical procedures for isolating the sciatic nerve were performed), and SNT (frogs in which the right sciatic nerve was completely transected). These animals were killed three days after the procedure, and their sciatic nerve DRGs used to demonstrate the effects of nerve transection on the ultrastructure, NADPH-diaphorase reaction, and immunohistochemical serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3 in the DRG. Other 20 animals, divided into the same experimental groups, were used to demonstrate the effects of SNI on the uptake of 14C-2-DG in the presence or absence of lactate, the production rate of 14CO2 from 14C-L-lactate and 14C-glucose in the DRG. These frogs were used to further demonstrate the effects of peripheral denervation on plasma glucose and lactate levels. Our results have demonstrated that sensory neurons of bullfrog, Lithobates catesbianus, DRG showed distribution, diameter and morphology similar to those described for these ganglion cells in mammals. The CGSs showed morphology similar to that described for these cells in the lymph nodes of other vertebrate species. Cells types II and III, observed in rabbit DRG did not occur in the Lithobates catesbianus DRG. The pattern of NADPH-diaphorase activity and distribution of immunoreactivity of serotonin, tyrosine hydroxylase and Glut 1 and 3 were also similar to those described in mammals. For the first time, it has been demonstrated the presence of NADPH-diaphorase reaction on SGCs of DRG in amphibians. The uptake of 14C-2-DG was reduced when lactate was added to the incubation medium. SNT-induced changes were also similar to those ones described in mammals. There was an increase in the number of mitochondria, endoplasmic reticulum, ribosomes and filaments in the SGCs cytoplasm; more neurons and SGCs with positive reaction to NADPH-diaphorase; a greater number of tyrosine hydroxylase immunoreactive extensions around body sensory neurons; and more c-Fos immunoreactivity in neuronal nuclei. No changes occurred in serotonin immunoreactivity and glucose transporters. There was an increase in the uptake of 14C-2-DG, which was reduced when lactate was added to the incubation medium. However, the formation of 14C-2-DG from 14C-L-lactato and glucose did not change under these conditions. Unlike mammals, SNT caused no change in the number of SGCs in DRG, showing a peculiarity in the response of frogs to SNT. Therefore, our study supports the use of frogs as an experimental model to study the effects of SNT, a model of phantom pain on the nerve tissue. However, given the peculiar differences occurred in the DRG of frogs with SNT, it is clearly necessary to carry out further studies to better understand the effects of an experimental situation like this in such animals.
32

Efeito da secção do nervo isquiático sobre parâmetros ultraestrutural, histoquímico, imunoistoquímico e de captação de análogos da glicose em gânglio da raiz dorsal de rãs Lithobates catesbianus

Rigon, Fabiana January 2013 (has links)
As rãs são utilizadas como modelos experimentais em diferentes situações experimentais. Uma delas é o estudo dos efeitos da seção do nervo isquiático (SNI) sobre o tecido nervoso. Essa ampla utilização desses animais como modelos experimentais justifica a realização de estudos que visam o conhecimento morfofuncional de seus tecidos. Inúmeros estudos mostram que, assim como nos mamíferos, o principal substrato energético no tecido nervoso de rãs é a glicose. Porém, é desconhecida a distribuição dos transportadores de glicose no tecido nervoso de rãs, bem como se a SNI altera esse transporte. Outra questão em aberto é se o lactato, cuja concentração está aumentada no plasma de rãs durante períodos de hibernação e após atividades motoras, é usado como substrato energético pelo tecido nervoso, o que está demonstrado em outras espécies de vertebrados. É desconhecida ainda no gânglio da raiz dorsal (GRD) de rãs a distribuição e os efeitos da SNT sobre a reação à nicotinamida adenina dinucleotídeo fosfato diaforase (NADPH-diaforase), enzima considerada equivalente a óxido nítrico sintase, responsável pela síntese de óxido nítrico, e a reação ao ácido periódico-reativo de Schiff (PAS), que indica a presença de mucopolissarídeos, incluindo o glicogênio, uma importante reserva energética no tecido nervoso de rãs. Desconhece-se também a distribuição e os efeitos da SNT sobre a imunorreatividade à serotonina, importante molécula com função neurotransmissora e/ou moduladora no sistema nervoso, tirosina hidroxilase, enzima limitante na síntese de catecolaminas, moléculas com diversos papéis fisiológicos, incluindo ação neurotransmissora e/ou neuromoduladora no tecido nervoso, e c-Fos, proteína considerada marcadora de ativação neural por estimulação nociva. Outras questões ainda em aberto são os efeitos da SNT sobre: a captação do análogo da glicose 1-14C 2-deoxi-D-glicose (14C-2-DG) e concentração plasmática de glicose e lactato; se os tipos II e III de células gliais satélites (CGSs), recentemente descritas no GRD de coelho, estão presentes nesse gânglio de rãs; e os efeitos da SNT sobre a ultraestrutura de CGSs e neurônios do GRD. Assim, o objetivo dessa tese foi determinar: 1) a ultraestrutura de neurônios e CGSs; 2) a distribuição das reações à NADPH-diaforase e PAS, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose tipo 1 e 3; e 3) a captação de 14C-2-DG, na presença e ausência de lactato, em GRD de rãs Lithobates catesbianus com e sem SNI. A escolha pelos transportadores de glicose tipos 1 e 3 foi pelo fato de ocorrerem na membrana de endotélio, células gliais e de neurônios. Para a realização do estudo inicialmente 12 rãs Lithobates catesbianus, adultas, machos, com peso de 100-200g, que não sofreram qualquer manipulação cirúrgica foram mortas por decapitação e os gânglios das raízes dorsais (GRDs) do nervo isquiático retirados e preparados para análises ultraestrutural, histoquímica à NADPH-diaforase e PAS, e imunoistoquímica à serotonina, tirosina hidroxilase e transportadores de glicose dos tipos 1 e 3. Feito isso, 18 outras rãs, nas mesmas condições físicas, foram divididas em três grupos experimentais (n=6/grupo): controle (rãs que não sofreram qualquer manipulação cirúrgica), sham (rãs onde foram efetuados apenas os procedimentos para isolamento do nervo isquiático) e SNI (rãs que tiveram o nervo isquiático direito totalmente seccionado em seu tronco comum). Esses animais foram mortos três dias após a intervenção cirúrgica e seus GRDs do nervo isquiático usados para demonstrar os efeitos da secção nervosa sobre a ultraestrutura, a reação à NADPH-diaforase, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose dos tipos 1 e 3 no GRD. Outros 20 animais, divididos nos mesmos grupos experimentais, foram usados para demonstrar os efeitos da SNI sobre a captação de 14C-2-DG, na presença ou ausência de lactato, e a taxa de produção de 14CO2 a partir de 14C-L-lactato e de 14C-glicose no GRD. Essas rãs foram usadas ainda para demonstrar os efeitos da denervação periférica sobre a concentração plasmática de glicose e lactato. Nossos resultados mostraram que os neurônios sensoriais do GRD de rã Lithobates catesbianus tiveram distribuição, diâmetro e morfologia que foi similar àquela descrita para essas células em gânglio de mamíferos. As CGSs apresentaram morfologia similar àquela descrita para essas células em gânglios de outras espécies de vertebrados. As células dos tipos II e III, observadas no GRD de coelho, não ocorreram no GRD de Lithobates catesbianus. O padrão de atividade à NADPH-diaforase e a distribuição da imunorreatividade à serotonina, tirosina hidroxilase e Glut 1 e 3 foram também similares ao descrito em mamíferos. Pela primeira vez foi demonstrada, em anfíbios, a presença de reação à NADPH-diaforase em CGCs do GRD. A captação de 14C-2-DG foi reduzida quando o lactato foi acrescentado ao meio de incubação. As alterações induzidas pela SNI foram também similares àquelas descritas nos mamíferos. Houve acréscimo no número de mitocôndrias, retículo endoplasmático, ribossomas e filamentos no citoplasma das CGSs, mais neurônios e CGCs com reação positiva à NADPH-diaforase, um maior número de prolongamentos imunorreativos à tirosina hidroxilase em torno de somas de neurônios sensoriais, e mais núcleos neuronais imunorreativos a c-Fos. Nenhuma alteração ocorreu na imunorreatividade a serotonina e transportadores de glicose. Houve aumento na captação de 14C-2-DG, que foi reduzido quando o lactato foi acrescentado ao meio de incubação. Porém, a formação de 14CO2 a partir de 14C-L-lactato e de 14C-glicose não alterou nessas condições. Todavia, diferentemente dos mamíferos, a SNI não provocou mudança no número de CGCs no GRD, mostrando uma peculiaridade na resposta das rãs à SNI. Assim, nosso estudo reforça o uso de rãs como modelo experimental para estudo dos efeitos da SNI, um modelo de dor fantasma, sobre o tecido nervoso. Porém, dada a diferença peculiar ocorrida no GRD de rãs com SNI, é evidente a necessidade de mais conhecimento dos efeitos dessa situação experimental nesses animais. / Frogs have been used as experimental models in different experimental situations. One of these is the study of the effects of the sciatic nerve transection (SNT) on the nerve tissue. The wide use of these animals as experimental models justifies the studies aimed at morphofunctionally understanding of their tissues. Numerous studies have shown that glucose is the main energy substrate in the nerve tissue of frogs as well as in mammals. However, the distribution of glucose transporters in the nerve tissue of frogs is unknown as well as whether SNT alters such transportation. Another unanswered question is whether the lactate, whose concentration is increased in the frog plasma during hibernation periods and after motor activities, is used as an energy substrate by the nerve tissue, which has been demonstrated in other vertebrate species. In the dorsal root ganglion (DRG) cells of frogs are still unknown the distribution and effects of SNT on the reaction of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase), an enzyme that is considered equivalent to nitric oxide synthase, responsible for the synthesis of nitric oxide, and on the reaction of periodic acid-Schiff (PAS), which indicates the presence of mucopolysaccharides, including glycogen, an important energy reserve in frog nerve tissue. Moreover, the distribution and effects of SNT on immunoreactivity to serotonin, an important molecule that functions as a neurotransmitter and / or neuromodulator in the nervous system, tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, molecules with various physiological roles, including neurotransmitter and / or neuromodulator action in the nerve tissue, and c-Fos, a protein that is regarded as a marker of neuronal activation by noxious stimulation are also unknown. Other questions regarding is the effect of SNT on the uptake of glucose analogue 2-Deoxy-D-glucose-1-14C (14C-2-DG) and glucose and lactate concentration plasma; whether the types II and III of satellite glial cells (SGCs), recently described in rabbit DRG, are present in this ganglion of frogs; and the effects of SNT on the ultrastructure of SGCs and DRG neurons remain unanswered as well. Thus, this thesis aimed to determine: 1) the ultrastructure of neurons and SGCs; 2) the distribution of NADPH-diaphorase and PAS reaction, and immunohistochemistry for serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3; and 3) the uptake of 2-DG-14C, in the presence and absence of lactate, in DRG of frogs, Lithobates catesbianus, with and without SNT. Glucose transporters types 1 and 3 were chosen because they occur in the membrane of endothelial cells, glial cells and neurons. Initially, 12 adult male frogs, Lithobates catesbianus, weighing 100-200g, not having undergone any previous surgical manipulation, were killed by decapitation. The DRGs of the sciatic nerve were removed and prepared for ultrastructural analysis, histochemistry of NADPH-diaphorase and PAS, and immunohistochemistry for serotonin, tyrosine hydroxylase and glucose transporters types 1 and 3. After that, 18 other frogs in the same physical conditions were divided into three experimental groups (n = 6/group): control group (frogs not subjected to any surgical manipulation), sham (frogs in which only surgical procedures for isolating the sciatic nerve were performed), and SNT (frogs in which the right sciatic nerve was completely transected). These animals were killed three days after the procedure, and their sciatic nerve DRGs used to demonstrate the effects of nerve transection on the ultrastructure, NADPH-diaphorase reaction, and immunohistochemical serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3 in the DRG. Other 20 animals, divided into the same experimental groups, were used to demonstrate the effects of SNI on the uptake of 14C-2-DG in the presence or absence of lactate, the production rate of 14CO2 from 14C-L-lactate and 14C-glucose in the DRG. These frogs were used to further demonstrate the effects of peripheral denervation on plasma glucose and lactate levels. Our results have demonstrated that sensory neurons of bullfrog, Lithobates catesbianus, DRG showed distribution, diameter and morphology similar to those described for these ganglion cells in mammals. The CGSs showed morphology similar to that described for these cells in the lymph nodes of other vertebrate species. Cells types II and III, observed in rabbit DRG did not occur in the Lithobates catesbianus DRG. The pattern of NADPH-diaphorase activity and distribution of immunoreactivity of serotonin, tyrosine hydroxylase and Glut 1 and 3 were also similar to those described in mammals. For the first time, it has been demonstrated the presence of NADPH-diaphorase reaction on SGCs of DRG in amphibians. The uptake of 14C-2-DG was reduced when lactate was added to the incubation medium. SNT-induced changes were also similar to those ones described in mammals. There was an increase in the number of mitochondria, endoplasmic reticulum, ribosomes and filaments in the SGCs cytoplasm; more neurons and SGCs with positive reaction to NADPH-diaphorase; a greater number of tyrosine hydroxylase immunoreactive extensions around body sensory neurons; and more c-Fos immunoreactivity in neuronal nuclei. No changes occurred in serotonin immunoreactivity and glucose transporters. There was an increase in the uptake of 14C-2-DG, which was reduced when lactate was added to the incubation medium. However, the formation of 14C-2-DG from 14C-L-lactato and glucose did not change under these conditions. Unlike mammals, SNT caused no change in the number of SGCs in DRG, showing a peculiarity in the response of frogs to SNT. Therefore, our study supports the use of frogs as an experimental model to study the effects of SNT, a model of phantom pain on the nerve tissue. However, given the peculiar differences occurred in the DRG of frogs with SNT, it is clearly necessary to carry out further studies to better understand the effects of an experimental situation like this in such animals.
33

Efeito da secção do nervo isquiático sobre parâmetros ultraestrutural, histoquímico, imunoistoquímico e de captação de análogos da glicose em gânglio da raiz dorsal de rãs Lithobates catesbianus

Rigon, Fabiana January 2013 (has links)
As rãs são utilizadas como modelos experimentais em diferentes situações experimentais. Uma delas é o estudo dos efeitos da seção do nervo isquiático (SNI) sobre o tecido nervoso. Essa ampla utilização desses animais como modelos experimentais justifica a realização de estudos que visam o conhecimento morfofuncional de seus tecidos. Inúmeros estudos mostram que, assim como nos mamíferos, o principal substrato energético no tecido nervoso de rãs é a glicose. Porém, é desconhecida a distribuição dos transportadores de glicose no tecido nervoso de rãs, bem como se a SNI altera esse transporte. Outra questão em aberto é se o lactato, cuja concentração está aumentada no plasma de rãs durante períodos de hibernação e após atividades motoras, é usado como substrato energético pelo tecido nervoso, o que está demonstrado em outras espécies de vertebrados. É desconhecida ainda no gânglio da raiz dorsal (GRD) de rãs a distribuição e os efeitos da SNT sobre a reação à nicotinamida adenina dinucleotídeo fosfato diaforase (NADPH-diaforase), enzima considerada equivalente a óxido nítrico sintase, responsável pela síntese de óxido nítrico, e a reação ao ácido periódico-reativo de Schiff (PAS), que indica a presença de mucopolissarídeos, incluindo o glicogênio, uma importante reserva energética no tecido nervoso de rãs. Desconhece-se também a distribuição e os efeitos da SNT sobre a imunorreatividade à serotonina, importante molécula com função neurotransmissora e/ou moduladora no sistema nervoso, tirosina hidroxilase, enzima limitante na síntese de catecolaminas, moléculas com diversos papéis fisiológicos, incluindo ação neurotransmissora e/ou neuromoduladora no tecido nervoso, e c-Fos, proteína considerada marcadora de ativação neural por estimulação nociva. Outras questões ainda em aberto são os efeitos da SNT sobre: a captação do análogo da glicose 1-14C 2-deoxi-D-glicose (14C-2-DG) e concentração plasmática de glicose e lactato; se os tipos II e III de células gliais satélites (CGSs), recentemente descritas no GRD de coelho, estão presentes nesse gânglio de rãs; e os efeitos da SNT sobre a ultraestrutura de CGSs e neurônios do GRD. Assim, o objetivo dessa tese foi determinar: 1) a ultraestrutura de neurônios e CGSs; 2) a distribuição das reações à NADPH-diaforase e PAS, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose tipo 1 e 3; e 3) a captação de 14C-2-DG, na presença e ausência de lactato, em GRD de rãs Lithobates catesbianus com e sem SNI. A escolha pelos transportadores de glicose tipos 1 e 3 foi pelo fato de ocorrerem na membrana de endotélio, células gliais e de neurônios. Para a realização do estudo inicialmente 12 rãs Lithobates catesbianus, adultas, machos, com peso de 100-200g, que não sofreram qualquer manipulação cirúrgica foram mortas por decapitação e os gânglios das raízes dorsais (GRDs) do nervo isquiático retirados e preparados para análises ultraestrutural, histoquímica à NADPH-diaforase e PAS, e imunoistoquímica à serotonina, tirosina hidroxilase e transportadores de glicose dos tipos 1 e 3. Feito isso, 18 outras rãs, nas mesmas condições físicas, foram divididas em três grupos experimentais (n=6/grupo): controle (rãs que não sofreram qualquer manipulação cirúrgica), sham (rãs onde foram efetuados apenas os procedimentos para isolamento do nervo isquiático) e SNI (rãs que tiveram o nervo isquiático direito totalmente seccionado em seu tronco comum). Esses animais foram mortos três dias após a intervenção cirúrgica e seus GRDs do nervo isquiático usados para demonstrar os efeitos da secção nervosa sobre a ultraestrutura, a reação à NADPH-diaforase, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose dos tipos 1 e 3 no GRD. Outros 20 animais, divididos nos mesmos grupos experimentais, foram usados para demonstrar os efeitos da SNI sobre a captação de 14C-2-DG, na presença ou ausência de lactato, e a taxa de produção de 14CO2 a partir de 14C-L-lactato e de 14C-glicose no GRD. Essas rãs foram usadas ainda para demonstrar os efeitos da denervação periférica sobre a concentração plasmática de glicose e lactato. Nossos resultados mostraram que os neurônios sensoriais do GRD de rã Lithobates catesbianus tiveram distribuição, diâmetro e morfologia que foi similar àquela descrita para essas células em gânglio de mamíferos. As CGSs apresentaram morfologia similar àquela descrita para essas células em gânglios de outras espécies de vertebrados. As células dos tipos II e III, observadas no GRD de coelho, não ocorreram no GRD de Lithobates catesbianus. O padrão de atividade à NADPH-diaforase e a distribuição da imunorreatividade à serotonina, tirosina hidroxilase e Glut 1 e 3 foram também similares ao descrito em mamíferos. Pela primeira vez foi demonstrada, em anfíbios, a presença de reação à NADPH-diaforase em CGCs do GRD. A captação de 14C-2-DG foi reduzida quando o lactato foi acrescentado ao meio de incubação. As alterações induzidas pela SNI foram também similares àquelas descritas nos mamíferos. Houve acréscimo no número de mitocôndrias, retículo endoplasmático, ribossomas e filamentos no citoplasma das CGSs, mais neurônios e CGCs com reação positiva à NADPH-diaforase, um maior número de prolongamentos imunorreativos à tirosina hidroxilase em torno de somas de neurônios sensoriais, e mais núcleos neuronais imunorreativos a c-Fos. Nenhuma alteração ocorreu na imunorreatividade a serotonina e transportadores de glicose. Houve aumento na captação de 14C-2-DG, que foi reduzido quando o lactato foi acrescentado ao meio de incubação. Porém, a formação de 14CO2 a partir de 14C-L-lactato e de 14C-glicose não alterou nessas condições. Todavia, diferentemente dos mamíferos, a SNI não provocou mudança no número de CGCs no GRD, mostrando uma peculiaridade na resposta das rãs à SNI. Assim, nosso estudo reforça o uso de rãs como modelo experimental para estudo dos efeitos da SNI, um modelo de dor fantasma, sobre o tecido nervoso. Porém, dada a diferença peculiar ocorrida no GRD de rãs com SNI, é evidente a necessidade de mais conhecimento dos efeitos dessa situação experimental nesses animais. / Frogs have been used as experimental models in different experimental situations. One of these is the study of the effects of the sciatic nerve transection (SNT) on the nerve tissue. The wide use of these animals as experimental models justifies the studies aimed at morphofunctionally understanding of their tissues. Numerous studies have shown that glucose is the main energy substrate in the nerve tissue of frogs as well as in mammals. However, the distribution of glucose transporters in the nerve tissue of frogs is unknown as well as whether SNT alters such transportation. Another unanswered question is whether the lactate, whose concentration is increased in the frog plasma during hibernation periods and after motor activities, is used as an energy substrate by the nerve tissue, which has been demonstrated in other vertebrate species. In the dorsal root ganglion (DRG) cells of frogs are still unknown the distribution and effects of SNT on the reaction of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase), an enzyme that is considered equivalent to nitric oxide synthase, responsible for the synthesis of nitric oxide, and on the reaction of periodic acid-Schiff (PAS), which indicates the presence of mucopolysaccharides, including glycogen, an important energy reserve in frog nerve tissue. Moreover, the distribution and effects of SNT on immunoreactivity to serotonin, an important molecule that functions as a neurotransmitter and / or neuromodulator in the nervous system, tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, molecules with various physiological roles, including neurotransmitter and / or neuromodulator action in the nerve tissue, and c-Fos, a protein that is regarded as a marker of neuronal activation by noxious stimulation are also unknown. Other questions regarding is the effect of SNT on the uptake of glucose analogue 2-Deoxy-D-glucose-1-14C (14C-2-DG) and glucose and lactate concentration plasma; whether the types II and III of satellite glial cells (SGCs), recently described in rabbit DRG, are present in this ganglion of frogs; and the effects of SNT on the ultrastructure of SGCs and DRG neurons remain unanswered as well. Thus, this thesis aimed to determine: 1) the ultrastructure of neurons and SGCs; 2) the distribution of NADPH-diaphorase and PAS reaction, and immunohistochemistry for serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3; and 3) the uptake of 2-DG-14C, in the presence and absence of lactate, in DRG of frogs, Lithobates catesbianus, with and without SNT. Glucose transporters types 1 and 3 were chosen because they occur in the membrane of endothelial cells, glial cells and neurons. Initially, 12 adult male frogs, Lithobates catesbianus, weighing 100-200g, not having undergone any previous surgical manipulation, were killed by decapitation. The DRGs of the sciatic nerve were removed and prepared for ultrastructural analysis, histochemistry of NADPH-diaphorase and PAS, and immunohistochemistry for serotonin, tyrosine hydroxylase and glucose transporters types 1 and 3. After that, 18 other frogs in the same physical conditions were divided into three experimental groups (n = 6/group): control group (frogs not subjected to any surgical manipulation), sham (frogs in which only surgical procedures for isolating the sciatic nerve were performed), and SNT (frogs in which the right sciatic nerve was completely transected). These animals were killed three days after the procedure, and their sciatic nerve DRGs used to demonstrate the effects of nerve transection on the ultrastructure, NADPH-diaphorase reaction, and immunohistochemical serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3 in the DRG. Other 20 animals, divided into the same experimental groups, were used to demonstrate the effects of SNI on the uptake of 14C-2-DG in the presence or absence of lactate, the production rate of 14CO2 from 14C-L-lactate and 14C-glucose in the DRG. These frogs were used to further demonstrate the effects of peripheral denervation on plasma glucose and lactate levels. Our results have demonstrated that sensory neurons of bullfrog, Lithobates catesbianus, DRG showed distribution, diameter and morphology similar to those described for these ganglion cells in mammals. The CGSs showed morphology similar to that described for these cells in the lymph nodes of other vertebrate species. Cells types II and III, observed in rabbit DRG did not occur in the Lithobates catesbianus DRG. The pattern of NADPH-diaphorase activity and distribution of immunoreactivity of serotonin, tyrosine hydroxylase and Glut 1 and 3 were also similar to those described in mammals. For the first time, it has been demonstrated the presence of NADPH-diaphorase reaction on SGCs of DRG in amphibians. The uptake of 14C-2-DG was reduced when lactate was added to the incubation medium. SNT-induced changes were also similar to those ones described in mammals. There was an increase in the number of mitochondria, endoplasmic reticulum, ribosomes and filaments in the SGCs cytoplasm; more neurons and SGCs with positive reaction to NADPH-diaphorase; a greater number of tyrosine hydroxylase immunoreactive extensions around body sensory neurons; and more c-Fos immunoreactivity in neuronal nuclei. No changes occurred in serotonin immunoreactivity and glucose transporters. There was an increase in the uptake of 14C-2-DG, which was reduced when lactate was added to the incubation medium. However, the formation of 14C-2-DG from 14C-L-lactato and glucose did not change under these conditions. Unlike mammals, SNT caused no change in the number of SGCs in DRG, showing a peculiarity in the response of frogs to SNT. Therefore, our study supports the use of frogs as an experimental model to study the effects of SNT, a model of phantom pain on the nerve tissue. However, given the peculiar differences occurred in the DRG of frogs with SNT, it is clearly necessary to carry out further studies to better understand the effects of an experimental situation like this in such animals.
34

Análise da expressão de isoformas de proteína quinase C em células cromafins da medula adrenal de ratos Wistar diabéticos tratados e não tratados com insulina

Pinheiro, Liliane Sena 25 June 2008 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-10-17T11:03:10Z No. of bitstreams: 1 lilianesenapinheiro.pdf: 8108520 bytes, checksum: b03200480798ddb2cf88a9276e4c9d8d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-10-22T13:09:54Z (GMT) No. of bitstreams: 1 lilianesenapinheiro.pdf: 8108520 bytes, checksum: b03200480798ddb2cf88a9276e4c9d8d (MD5) / Made available in DSpace on 2016-10-22T13:09:54Z (GMT). No. of bitstreams: 1 lilianesenapinheiro.pdf: 8108520 bytes, checksum: b03200480798ddb2cf88a9276e4c9d8d (MD5) Previous issue date: 2008-06-25 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O diabetes mellitus (DM) reduz a secreção de catecolaminas (CAs) das células cromafins adrenais, sendo esse um evento patofisiológico crítico por favorecer a ocorrência de episódios de hipoglicemia grave decorrentes do próprio tratamento da doença. Vários trabalhos relatam a participação de proteínas quinase C (PKCs) nas vias de síntese e secreção de CAs nas células cromafins. Os objetivos desse trabalho foram analisar o efeito do DM sobre a expressão das isoformas α, ε e ζ de PKC em células cromafins de ratos e avaliar se o controle glicêmico reverte os efeitos da doença. Foram utilizados ratos Wistar com DM induzido por estreptozotocina. Foram estabelecidos três grupos experimentais, ratos controles (C), diabéticos tratados com salina (DTS) ou com insulina (DTI). As análises foram feitas 15 dias após a indução. Utilizamos as técnicas de imunohistoquímica e Western Blot. A insulinoterapia foi estabelecida após estudos do comportamento alimentar e da variação dos níveis glicêmicos de ratos controles e doentes durante 24h consecutivas. Foi testada a eficácia de diferentes esquemas de tratamento com insulina. O tratamento estabelecido consistiu em injeções de insulina NPH, sendo 1U aplicada às 13h e 4U às 19h. Após os 15 dias de tratamento, o ganho médio de massa corporal dos ratos C (+37±3g) e DTI (+43±3g) foram similares enquanto os DTS emagreceram (-9±6g). A média da glicemia de jejum dos ratos C (74±1mg/dl) e dos DTI (93±6mg/dl) foram similares e dentro dos níveis normais, enquanto que a dos ratos DTS foi elevada (471±23mg/dl). A insulinoterapia restabeleceu os níveis plasmáticos do colesterol total, c-LDL e c-VLDL nos ratos DTI. O DM não alterou os níveis de c-HDL, triglicerídos e frutosamina. As análises da expressão de PKCs mostraram que a PKCα é a mais expressada seguida de ζ e depois de ε. O DM reduziu em 39,5% a expressão da PKCα, enquanto a de ζ foi aumentada em 74,2%. A expressão da PKCε não foi afetada pelo DM. O tratamento com insulina reverteu o efeito do DM sobre a expressão de PKCα, a expressão da PKCε continuou inalterada e a expressão da PKCζ permaneceu elevada (+32,6%) quando comparada aos ratos C. Concluímos que em células cromafins adrenais, o diabetes afeta a expressão de isoformas de PKCs de maneira diferenciada. Trabalhos realizados em nosso laboratório mostraram que o DM reduz o conteúdo total (21,1%), a secreção basal (-24,3%) e a estimulada por carbacol (-28,9%) e K+ (42,2%) de CAs. Como observado para PKCα, a insulinoterapia reverteu o efeito do DM sobre o conteúdo total. Já foi demonstrado que PKCα participa de uma via de sinalização que estimula a atividade de tirosina hidroxilase. Por outro lado, o tratamento não restabeleceu os processos secretórios, sugerindo que PKCζ possa estar envolvida nessa alteração. Há fortes evidências de que PKCζ regula canais de K+ retificadores, o que pode explicar o efeito da doença sobre o processo de secreção via despolarização da membrana. / The diabetes mellitus (DM) reduces the catecholamine (CAs) secretion of adrenal chromaffin cells, a critical pathophysiologic event that promotes the occurrence of serious hypoglycemia episodes, consequence of the disease treatment. Several papers report the participation of protein kinase C (PKC) on catecholamine synthesis signal pathways of adrenal chromaffin cells. The objectives of this work were to study the effect of DM on expression of PKC isoforms α, ε and ζ in rat chromaffin cells and to evaluate if the glicemic control revert the effect of the illness. Male Wistar rats with diabetes induced by streptozotocin were used. Three experimental groups were determined: Control (C), diabetic rats receiving saline solution (DS) and diabetic rats receiving insulin (DI). The analyses were made after 15 days of DM induction. Immunohistochemistry and western blotting techniques were done. The insulin therapy protocol was established after studying the feeding behavior and glycemic level variations during the whole 24h. The information made possible to establish the time of insulin applications. Several schemes of insulin treatments were tested to keep the diabetic rat as close as possible to normoglycemia path. The best results were found by using 1U at 1:00 PM and 4U at 7:00 PM of NPH insulin. After 15 days of treatment the acquired body weight was similar between C and DI rats, 37±3g and 43±3g, respectively. The DS rats emaciated 9±6g. The fasting glycemic levels were 74±1mg/dl, 93±6mg/dl and 471±23mg/dl to C, DI and DS rats, respectively. The insulin therapy reestablishes the plasmic levels of total cholesterol, c-LDL and c-VLDL on DI rats. The DM did not change the levels of c-HDL, triglycerides and frutosamine. The PKCα is the more expressed isoform in adrenal chromaffin cells, followed by ζ and ε. The DM reduced 39,5% the PKCα expression and, unlike, increased 74,2% the expression of PKCζ. The expression of PKCε was not affected by DM. The insulin treatment reverted the effect of DM on PKCα, the expression of PKCε remained unchanged and the expression of PKCζ remained higher than the control group (+32,6%). Studies of our laboratory show that the DM causes reduction on adrenal catecholamine content (21,1%), basal secretion (-24,3%) and catecholamine secretion stimulated by carbachol (-28,9%) and high K+ (-42,2%). The insulin therapy, in like manner as observed on PKCα, reverted the DM effect on adrenal catecholamine content. It was shown that PKCα participates on signal transduction pathway that stimulates the activity of tyrosine hydroxylase. Otherwise, the insulin treatment did not restore the secretory processes, suggesting that PKCζ could be involved in this process. There are strong evidences showing that PKCζ regulates the voltage-dependent delayed rectifier K (Kv) and its expression was not normalized by insulin therapy.
35

Origem da inervação dopaminérgica da divisão central da amígdala expandida e da concha do núcleo Acumbens no rato. / Origin of dopaminergic fibers to the central extended amygdala and nucleus accumbens shell in the rat.

Renata Hydee Hasue 23 January 2001 (has links)
A amígdala expandida central (EAc) inclui os núcleos central da amígdala (CeA), intersticial lateral da estria terminal (BSTl), intersticial do ramo posterior da comissura anterior (IPAC) e amígdala expandida sublenticular (SLEA). A EAc e a concha do acumbens possuem densa inervação dopaminérgica, implicada em processos motivacionais, e cuja origem foi estudada com a técnica de dupla marcação celular, combinando-se imunofluorescência para o traçador retrógrado Fluoro-Gold e para a tirosina hidroxilase. Nossos resultados indicam que a inervação dopaminérgica do CeA e BSTl é semelhante, se originando em igual proporção da área tegmental ventral (A10) e do núcleo dorsal da rafe/substância cinzenta periaquedutal (A10dc). A inervação dopaminérgica da SLEA, IPAC e concha do acumbens se origina principalmente do grupo A10. Com um anticorpo específico para dopamina vimos que parte da projeção do A10dc para o CeA é de fato dopaminérgica. Os grupos dopaminérgicos diencefálicos não inervam a EAc e a concha do acumbens. / The central extended amygdala (EAc) includes the central amygdaloid nucleus (CeA), lateral bed nucleus of the stria terminalis (BSTl), interstitial nucleus of the posterior limb of the anterior commissure (IPAC) and sublenticular extended amygdala (SLEA). The dopaminergic innervation of the EAc and nucleus accumbens shell is functionally related to motivational processes. Its origin was studied by combining immunofluorescence to tyrosine hydroxylase and Fluoro-Gold, used as retrograde tracer. Our results show that dopaminergic fibers to the CeA and BSTl derive in equal proportion from neurons in ventral tegmental area (A10) and in dorsal raphe nucleus/periaqueductal gray (A10dc). Dopaminergic inputs to SLEA, IPAC and accumbens shell arise mainly from A10 neurons. Using a dopamine antibody, we confirmed that A10dc projections to CeA are in part dopaminergic. Futhermore, the present data indicate that the diencephalic dopaminergic groups do not project to EAc and accumbens shell.

Page generated in 0.0444 seconds