• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 42
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 114
  • 60
  • 40
  • 36
  • 23
  • 20
  • 19
  • 19
  • 16
  • 15
  • 15
  • 15
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Test the ability of axolotl decellularized ECM scaffold to improve skin wound healing in mice

Alariba, Walid 12 1900 (has links)
Le but de notre étude visait à déterminer si les matrices ECM (extracellular matrix) préparés à partir d'un modèle vertébré (Axolotl) capables de régénérer ses tissus suite à une blessure sont plus efficaces pour stimuler les réponses régénératives chez les animaux non régénérant (par exemple les mammifères). Nous avons testé la capacité de matrice ECM axolotl à améliorer la guérison des plaies cutanées dans des souris et nous les avons comparés à une matrice disponible commercialement (échafaudage Symbios PerioDerm) pour leur efficacité à favoriser la guérison des plaies. Des lésions d'excision ont été créées sur le dos de souris et les animaux ont été regroupés dans différents groupes; a-) ECM de peau axolotl décellularisée (groupe Axolotl), b-) matrice de derme acellulaire Symbios Perioderm (groupe PerioDerm), c-) grillage en titane (groupe témoin); respectivement. Les tissus des plaies ont été récoltés à des moments précis : 7 jours et 30 jours après la blessure pour évaluer la guérison des plaies. La guérison des blessures ayant reçu les différentes matrices a été comparées entre elles en utilisant le test de transillumination et des analyses histologiques. Les résultats indiquent que la ECM de peau d’axolotl décellularisée est bien tolérée par les souris, car aucun rejet n'a été observé. Le groupe qui a reçu l'ECM de la peau axolotl décellularisé a démontré une réépithélialisation, une densité cellulaire, une teneur en collagène (avec une organisation similaire à un tissu intact) et une vascularisation (angiogenèse) élevées par rapport aux groupes PerioDerm et témoins. La présence de follicules pileux était également observé dans le groupe axolotl (qui n'est pas présent dans PerioDerm et groupes de contrôle). Sur la base de nos résultats, l'hypothèse de base semble être correcte en ce qu'une matrice ECM provenant d'un régénérateur puissant semble favoriser la guérison plus efficacement chez les animaux normalement non régénérants. Cependant, des recherches supplémentaires devront être menées pour confirmer ces résultats. / The aim of our study sought to determine whether ECM scaffolds prepared from a vertebrate model (Axolotl) capable of regenerating tissues following injury are more effective at stimulating regenerative responses in non-regenerating animals (e.g., mammals). We tested the ability of axolotl decellularized ECM scaffolds to improve skin wound healing in mammalian models and compare the axolotl skin ECM scaffold to a commercially available one (Symbios PerioDerm scaffold) for efficiency in promoting wound healing. Excisional lesions were created on the back of mice, and animals in different groups were treated by; a-) decellularized axolotl skin ECM (Axolotl group), b-) Symbios Perioderm acellular dermis scaffold (PerioDerm group), d-) Titanized mesh only (Control group); respectively. Wound tissues were harvested at time points: 7- and 30-days post-wounding to assess the scaffolds impact on wound healing. Wound healing was compared between the Axolotl, PerioDerm and Control groups using transillumination test and histological analyses, Results indicate that the decellularized axolotl skin ECM is well tolerated by mammalian models, as no immune rejection was observed. The axolotl group that received the decellularized Axolotl Skin ECM demonstrated high reepithelialization, cellular density, collagen content (in a porous pattern similar to intact skin), vascularization (angiogenesis) compared to PerioDerm and control groups. The presence of hair follicles was also observed in the axolotl group (which is not present in PerioDerm and control groups). Based on our results, the basic hypothesis appears to be correct in that an ECM scaffold from a strong regenerator seems to promote healing more efficiently in non-regenerating animals. However, further research should be conducted to confirm these findings.
112

A Comparative Analysis of the Biomechanics and Biochemistry of Cell-Derived and Cell-Remodeled Matrices: Implications for Wound Healing and Regenerative Medicine

Ahlfors, Jan-Eric Wilhelm 03 May 2004 (has links)
The purpose of this research was to study the synthesis and remodeling of extracellular matrix (ECM) by fibroblasts with special emphasis on the culture environment (media composition and initial ECM composition) and the resulting mechanical integrity of the ECM. This was investigated by culturing fibroblasts for 3 weeks in a variety of culture conditions consisting of collagen gels, fibrin gels, or media permissive to the self-production of ECM (Cell-Derived Matrix), and quantifying the mechanics of the resulting ECM. The mechanical characteristics were related to the biochemistry of the resulting ECM, notably in terms of collagen accumulation and collagen fibril diameters. The ultimate tensile strength (UTS) of the collagen gels and fibrin gels at the end of the 3-week period was 168.5 ± 43.1 kPa and 133.2 ± 10.6 kPa, respectively. The ultimate tensile strength of the cell-derived matrices was 223.2 ± 9 kPa, and up to 697.1 ± 36.1 kPa when cultured in a chemically-defined medium that was developed for the rapid growth of matrix in a more defined environment. Normalizing the strength to collagen density resulted in a UTS / Collagen Density in these groups of 6.4 ± 1.9 kPa/mg/cm3, 25.9 ± 2.4 kPa/mg/cm3, 14.5 ± 1.1 kPa/mg/cm3, and 40.0 ± 1.9 kPa/mg/cm3, respectively. Cells were synthetically more active when they produced their own matrix than when they were placed within gels. The resulting matrix was also significantly stronger when it was self-produced than when the cells rearranged the matrix within gels that corresponded to a significantly larger fraction of non-acid and pepsin extractable collagen. These studies indicate that cell-derived matrices have potential both as in vitro wound healing models and as soft connective tissue substitutes.
113

Diluted antibiotics for treating traumatized immature teeth

Sabrah, Ala'a Hussein Aref, 1984- January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Endodontic regeneration (ERP) has been successfully used in the treatment of traumatized immature teeth. The procedure has three essential steps: disinfecting the root canal (i.e. triple antibiotic paste (TAP) or double antibiotic paste (DAP)), provoking bleeding inside the canal to form a scaffold upon which pulp stem cells will be deposited and continue root growth, and creating a good coronal seal. Previous research has reported that antibiotic pastes (TAP and DAP) are cytotoxic to stem cells in the concentrations commonly used in endodontic regeneration (1000 mg/mL). To decrease the adverse effects on stem cells and increase the rate of success of the regeneration, defining appropriate antibiotic concentrations for ERP is critical. In this project, five in-vitro experiments were conducted to determine the breakpoint dilutions of both TAP and DAP medicaments, and to prepare a suitable novel pastes containing diluted TAP or DAP medicaments for ERP. In the first experiment, we compared the antibacterial effect of TAP, and DAP against early biofilm formation of Enterococcus faecalis (E. faecalis) and Porphyromonas gingivalis bacteria. In the second study, we investigated the antibacterial effect of various dilutions of TAP and DAP antibiotic medicaments against established E. faecalis biofilm. In the third experiment, we investigated longitudinally the residual antibacterial activity of human radicular dentin treated with 1000, 1 or 0.5 mg/ml of TAP and DAP. In the fourth study, we investigated the cytotoxic effect of various dilutions of TAP and DAP antibiotic medicaments on the survival of human dental pulp stem cells (DPSC). And in the fifth experiment, we investigated the antibacterial and cytotoxic effect of novel intracanal medicaments consisting of methylcellulose (MC) and/or propylene glycol (PG) mixed with 1mg/ml of TAP or DAP. 1 mg/ml of DAP or TAP medicaments had a significant antibacterial effect against early bacterial biofilm formation, and established bacterial biofilm. Furthermore, 1 mg/ml had a residual antibacterial activity comparable to 1000 mg/ml. The novel intracanal medicaments had comparable antibacterial effect to currently used medicaments (1000 mg/ml). Additionally, the novel intracanal medicaments significantly enhanced DPSC metabolic activity, compared to currently used medicaments in endodontic regeneration procedures.
114

Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair

Pateman, C.J., Harding, A.J., Glen, A., Taylor, C.S., Christmas, C.R., Robinson, P.P., Rimmer, Stephen, Boissonade, F.M., Claeyssens, F., Haycock, J.W. 2015 February 1914 (has links)
Yes / The peripheral nervous system has a limited innate capacity for self-repair following injury, and surgical intervention is often required. For injuries greater than a few millimeters autografting is standard practice although it is associated with donor site morbidity and is limited in its availability. Because of this, nerve guidance conduits (NGCs) can be viewed as an advantageous alternative, but currently have limited efficacy for short and large injury gaps in comparison to autograft. Current commercially available NGC designs rely on existing regulatory approved materials and traditional production methods, limiting improvement of their design. The aim of this study was to establish a novel method for NGC manufacture using a custom built laser-based microstereolithography (muSL) setup that incorporated a 405 nm laser source to produce 3D constructs with approximately 50 mum resolution from a photocurable poly(ethylene glycol) resin. These were evaluated by SEM, in vitro neuronal, Schwann and dorsal root ganglion culture and in vivo using a thy-1-YFP-H mouse common fibular nerve injury model. NGCs with dimensions of 1 mm internal diameter x 5 mm length with a wall thickness of 250 mum were fabricated and capable of supporting re-innervation across a 3 mm injury gap after 21 days, with results close to that of an autograft control. The study provides a technology platform for the rapid microfabrication of biocompatible materials, a novel method for in vivo evaluation, and a benchmark for future development in more advanced NGC designs, biodegradable and larger device sizes, and longer-term implantation studies.

Page generated in 0.0922 seconds