• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 679
  • 123
  • 72
  • 67
  • 67
  • 56
  • 46
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1493
  • 1493
  • 325
  • 323
  • 277
  • 238
  • 218
  • 161
  • 134
  • 128
  • 127
  • 115
  • 115
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Development of a novel co-culture based in vitro model system to study the wound healing process

Abraham, Suraj 07 September 2010 (has links)
Drug development research on wound repair is challenging and inefficient due to the complex nature of wound healing and scarring processes and the limitations of available in vitro or in vivo models used for preclinical drug testing. Many patients who undergo elective back surgery develop post-surgical complications resulting from excess peridural scarring in and around the site of operation. We tested the effects of two anti-inflammatory compounds, quercetin and L-2-oxothiazolidine-4-carboxylate (OTC), in ameliorating peridural scar formation following spinal laminectomy surgery in laboratory rats. Western blot and immunocytochemical analyses indicated that the peridural scar tissue contained MyoD-positive myoblast cells and expressed prolyl-4-hydroxylase (P4H), a fibroblast marker. Treatment with 1 mM OTC reduced activation of ERK1/2 and p38 mitogen-activated protein kinases (MAPK) at 21 days post-surgery suggesting potential anti-scarring mechanism. However, large animal to animal variation in the expression levels of collagen biosynthesis markers made it difficult to demonstrate any efficacy of quercetin or OTC in reducing peridural scar formation. The shortcomings of this live animal approach led us to develop a novel three-dimensional (3-D) <i>in vitro</i> wound repair model for evaluating quercetin and OTC effects. High-density micromass co-cultures seeded at a 1:3 ratio of FR 3T3 fibroblast cells and L8 myoblast cells formed 3-D microtissues <i>in vitro</i> that expressed MyoD, P4H, and á-smooth muscle actin. The micromass tissue layer remained adherent to the culture plate when inflicted with a single laceration injury, which allowed monitoring of cell migration into the wound site. Wounded cultures were treated with quercetin, OTC and other agents (TGF- â1, mitomycin, p38 inhibitor SB202190, ERK inhibitor PD184352) to determine their effects on collagen accumulation, wound closure rates, MAPK activation, and gene transcript expression. Both OTC and quercetin treatments reduced collagen biosynthesis in dose-dependent manner. In addition, 1.5 mM OTC accelerated wound closure and significantly reduced p38 MAPK activation without affecting ERK1/2. In contrast, 40 µM quercetin delayed wound closure in micromass co-cultures and reduced ERK1/2 activation. Our in vitro findings suggest that OTC might have potential as an anti-scarring agent. Importantly, our novel micromass co-culture system shows promise as an improved 3-D scaffold-free in vitro model for use in preclinical drug development research.
392

Fabrication of alginate hydrogel scaffolds and cell viability in calcium-crosslinked alginate hydrogel

Cao, Ning 03 August 2011 (has links)
Tissue-engineering (TE) is one of the most innovative approaches for tackling many diseases and body parts that need to be replaced, by developing artificial tissues and organs. For this, tissue scaffolds play an important role in various TE applications. A tissue scaffold is a 3D (3D) structure with interconnected pore networks and used to facilitate cell growth and transport of nutrients and wastes while degrading gradually itself. Many fabrication techniques have been developed recently for incorporating living cells into the scaffold fabrication process and among them; dispensing-based rapid prototyping techniques have been drawn considerable attention due to its fast and efficient material processing. This research is aimed at conducting a preliminary study on the dispensing-based biofabrication of 3D cell-encapsulated alginate hydrogel scaffolds. Dispensing-based polymer deposition system was used to fabricate 3D porous hydrogel scaffolds. Sodium alginate was chosen and used as a scaffolding biomaterial. The influences of fabrication process parameters were studied. With knowledge and information gained from this study, 3D hydrogel scaffolds were successfully fabricated. Calcium chloride was employed as crosslinker in order to form hydrogels from alginate solution. The mechanical properties of formed hydrogels were characterized and examined by means of compressive tests. The influences of reagent concentrations, gelation time, and gelation type were studied. A post-fabrication treatment was used and characterized in terms of strengthening the hydrogels formed. In addition, the influence of calcium ions used as crosslinker on cell viability and proliferation during and after the dispensing fabrication process was examined and so was the influence of concentration of calcium solutions and exposing time in both media and alginate hydrogel. The study also showed that the density of encapsulated cells could affect the viscosity of alginate solution. In summary, this thesis presents a preliminary study on the dispensing-based biofabrication of 3D cell-encapsulated alginate hydrogel scaffolds. The results obtained regarding the influence of various factors on the cell viability and scaffold fabrication would form the basis and rational to continue research on fabricating 3D cell-encapsulated scaffolds for specific applications.
393

Advanced Fibrous Scaffold Engineering for Controlled Delivery and Regenerative Medicine Applications

Liao, I-Chien January 2010 (has links)
<p>Continuous nanostructures, such as electrospun nanofibers, embedded with proteins may synergistically present the topographical and biochemical signals to cells for tissue engineering applications. In this dissertation, co-axial electrospinning is introduced as a mean to efficiently encapsulate and release protein and live entities while producing a tissue engineering scaffold with uniaxial topography. In the first specific aim, aligned poly (caprolactone) nanofibers encapsulated with BSA and growth factors were produced to demonstrate controlled release and bioactivity retention properties. Control over release kinetics is achieved by incorporation of poly(ethylene glycol) as a porogen in the shell of the fibers. PEG leaches out in a concentration and molecular weight dependent fashion, leading to BSA release half-lives that range from 1 -20 days. The second specific aim introduces the fabrication of virus and bacterial cell encapsulated electrospun fibers to achieve unique biological functionalization. Adenovirus encoding the gene for green fluorescent protein was efficiently encapsulated into the core of poly(caprolactone) fibers through co-axial electrospinning and subsequently released via the porogen-mediated process. Encapsulated bacterial cells were confined to fibers of varying core sizes, which provided an aqueous core environment for free mobility and allowed the bacterias to proliferate within the fibers. </p><p>In the third specific aim, the differentiation of skeletal myoblasts on aligned electrospun polyurethane fibers and in the presence of electromechanical stimulation were systematically studied. Skeletal myoblasts cultured on aligned polyurethane (PU) fibers showed more pronounced elongation, better alignment, upregulation of contractile proteins and higher percentage of striated myotubes compared to those cultured on random PU fibers and film. In the last specific aim, the controlled release aspect of co-axial electrospun fibers were combined with skeletal tissue engineering to serve as a therapeutic implant for the treatment of hemophilia. A non-viral, tissue engineering approach were taken to stimulate local lymphatic or vascular system in order to enhance transport near the FVIII-producing implants to provide effective and sustained treatment for hemophilia A. Stable FVIII-producing clones were engineered from isolated myoblasts and cultured on aligned, protein-releasing electrospun fibers to form skeletal myotubes. The implanted construct rapidly integrated with host tissue and selectively induced angiogenesis or lymphangiogenesis as a result of the encapsulated growth factors. Constructs inducing angiogenesis significantly enhanced the transport of produced FVIII and achieved hemophilia phenotypic correction over two months. The use of co-axial electrospun fibers to serve as controlled delivery and tissue engineering construct furthers the continued pursue of a more sophisticated and medically relevant implant scaffold design.</p> / Dissertation
394

Stretch-Induced Effects on MicroRNA Expression and Exogenous MicroRNA Delivery in Differentiating Skeletal Myoblasts

Rhim, Caroline January 2009 (has links)
<p>The research presented here represents a quest to understand and address limitations in the field of skeletal muscle tissue engineering, with hopes to better understand the factors involved in producing viable engineered skeletal muscle tissue. The driving force behind this research was to address two of the many factors important in muscle cell proliferation and differentiation, toward developing mature and functional bioartificial skeletal muscles (BAMs). Our work focused on understanding the individual effects of mechanical stimulation and microRNAs (miRNAs), as well as the synergistic relationship between the two factors. We hypothesized that (1) myoblast proliferation and differentiation are modulated by mechanical stimulation via temporally regulated miRNAs and that (2) modulating these miRNAs can enhance skeletal muscle function in a 3D tissue-engineered system.</p><p>We first established a BAM system using C2C12 mouse myoblasts in a collagen gel, showing that these cells were able to produce mature sarcomeres when cultured under steady, passive tension for up to 36 days. Staining muscle-specific proteins and electron microscopy showed distinct striations and myofiber organization as early as 6 days, post-differentiation. At 33 days, cultures contained collagen fibers and showed localization of paxillin at the fiber termini, suggesting that myotendinous junctions were forming.</p><p>We then focused on the effects of mechanical stimulation on C2C12 myoblasts in a more simple, 2D system. In particular, we assessed miRNA and muscle-specific gene expression over time and in response to two cyclic stretch regimens using miRNA microarray technology and quantitative real time RT-PCR. Both miRNAs and certain genes, such as SRF and Mef2c, had differential responses to the two regimens. Over-expression and inhibition studies of one muscle-specific miRNA, miR-1, abrogated the stretch response and suggest that a balancing mechanism is in place to avoid large fluctuations in miRNA levels. </p><p>Finally, since miRNA modulation quenched the stretch-mediated response in myoblasts, we chose to examine 3D BAM function when miRNA levels were altered to promote differentiation. Using the same collagen gel model established previously, a muscle-specific miRNA, miR-133, known to promote proliferation, was transiently inhibited (anti-miR-133) to encourage differentiation. Forces in the anti-miR-133 BAMs were, on average, 20% higher over the negative control. Further, myofiber diameters were significantly greater and striations were more organized in the anti-miR-133 BAMs, suggesting that transient, exogenous delivery of miRNAs may be a viable approach to create a more fully differentiated muscle.</p> / Dissertation
395

Controlled In Vivo Mechanical Stimulation of Bone Repair Constructs

Duty, Angel Osborne 12 April 2004 (has links)
Bone grafts are used to treat more than 300,000 fracture patients yearly, as well as patients with congenital defects, bone tumors, and those undergoing spinal fusion. Given the established limitations of autograft and allograft bone, there is a substantial need for bone graft substitutes. Tissue engineering strategies employing the addition of osteogenic cells and/or osteoinductive factors to porous scaffolds represent a promising alternative to traditional bone grafts. While many bone defects are in load-bearing sites, very little is known about the response of bone grafts and their substitutes to mechanical loading, despite vast documentation on the ability of normal bone to adapt to its mechanical environment. The goal of this research was to quantify the effects of controlled in vivo mechanical stimulation on bone graft repair and bone graft substitutes and identify the local stress/strain environment associated with load-induced changes in bone formation. The global hypothesis that cyclic in vivo mechanical loading improves mineralized matrix formation within bone grafts and bone graft substitutes was addressed in this work using orthotopic and ectopic models specifically designed to facilitate modeling of local stresses and strains. In the first study, a bone defect repair model utilizing an orthotopic implant capable of supplying a controlled mechanical stimulus to a trabecular allograft showed a significant reduction in new bone formation with controlled in vivo mechanical loading. Although the reason remains unclear, loading conditions may not have been ideal for increased bone formation or potential micromotion may have influenced the results. A second study demonstrated for the first time that controlled in vivo mechanical stimulation enhances mineralized matrix production on a mesenchymal stem cell-seeded polymeric construct using a novel subcutaneous implant system. In addition, the local stresses and strains associated with this adaptive response were predicted. The novel subcutaneous implant represents technology which may be adapted for the preparation of tissue-engineered bone constructs, capitalizing on the benefits of mechanical loading and a vascularized in vivo environment. Such an approach may produce larger, stronger, and more homogeneous constructs than could be developed in a static culture system subject to diffusional limitations.
396

In Vitro and In Vivo Characterization of a Cell Source for Bone Tissue Engineering Applications: Primary Bone Marrow Stromal Cells Overexpressing the Osteoblast-Specific Transcriptional Activator Runx2/Cbfa1

Byers, Benjamin Allen 12 February 2004 (has links)
Bone tissue engineering strategies are currently being developed as alternative mechanisms to address the clinical demand for bioactive and biomechanical graft material. To date, these efforts have been largely restricted by inadequate supply of committed osteoprogenitor cells and loss of osteoblastic phenotype expression following in vitro culture and expansion. The objective of this thesis research was to address the cell sourcing limitations of tissue-engineered bone grafts through constitutive and sustained overexpression of the osteoblast-specific transcriptional activator Runx2/Cbfa1 in osteogenic marrow-derived stromal cells using retroviral gene delivery. Runx2 overexpression enhanced expression of multiple osteoblastic genes proteins and, more importantly, significantly up-regulated matrix mineralization in both monolayer culture and following cell seeding in 3-D polymeric scaffolds. To evaluate in vivo performance, Runx2-expressing cells were seeded into 3-D constructs and implanted both subcutaneously and in a critical size craniotomy bone defect model. Notably, in vitro pre-culture of Runx2-transduced cell-seeded constructs prior to implantation significantly enhanced their capacity to form mineralized tissue in the subcutaneous space and induce new bone formation in the critical size defect model compared to control cells. The described series of analyses provided a novel combination of tissue and genetic engineering techniques toward the development of a Runx2-modified stromal cell/polymeric scaffold composite tissue-engineered bone graft substitute.
397

Development of a small animal model to study tissue engineering strategies for growth plate defects

Coleman, Rhima M. 10 July 2007 (has links)
The growth plate is a cartilaginous tissue responsible for the longitudinal growth of long bones. It is a complex tissue composed of chondrocytes whose maturation and proliferation is tightly regulated by a biochemical feedback loop. Injury to this tissue can result in a limb length discrepancy or angular deformity that may lead to life long disability. Given the recent rise in the number of growth plate injuries and the variability in success of current therapies, there is a significant need for a greater understanding of growth plate injury pathology and the development of improved treatment strategies. Cartilage tissue engineering strategies offer an attractive alternative to regenerating growth plate tissue and restoring growth function. Bone marrow-derived stem cells (BMSCs) have been shown to be able to undergo chondrogenic differentiation and in vitro and in vivo and therefore offers an appealing and abundant cell resource for developing tissue engineering strategies for the treatment of growth plate defects. However, the dependence of chondrogenic differentiation and matrix accumulation on monolayer expansion protocols and three-dimensional (3D) culture environment has received little attention. Prior to developing treatment strategies for growth plate injury repair, it is essential to first understand the interconnection between alterations in growth plate morphology and subsequent limb deformities. To that end, we have established a surgical defect model of growth plate injury in Sprague Dawley rats and developed a novel technique to quantitatively monitor growth plate morphology in health and disease using microcomputed tomography (micro-CT) imaging. In an effort to develop a tissue engineering treatment strategy for growth plate injury, the role of monolayer expansion, 3D scaffold, and growth factor regimen in the chondrogenic differentiation of rat BMSCs was also examined. This research study has demonstrated the utility of micro-CT as a non-invasive imaging modality for assessing growth plate injury and repair. This work has also provided an improved understanding of the interrelationship of monolayer expansion, 3D culture environment, and growth factor regimen in BMSC chondrogenic differentiation. Finally, this work suggests that an injectable in situ gelling hydrogel is a feasible method for decreasing limb length discrepancies, however, neither implantation of agarose alone into the defect nor the inclusion of BMSCs fully corrects growth disruption.
398

Regulatory Mechanisms in the Chondrogenesis of Mesenchymal Progenitors: The Roles of Cyclic Tensile Loading and Cell-Matrix Interactions

Connelly, John Thomas 14 June 2007 (has links)
Cartilage tissue engineering represents an exciting potential therapy for providing permanent and functional regeneration of healthy cartilage tissues, but these treatment options have yet to be successfully implemented in a clinical setting. One of the primary obstacles for cartilage engineering is obtaining a sufficient supply of cells capable of regenerating a functional cartilage matrix. Mesenchymal progenitors can easily be isolated from multiple tissues, expanded in vitro, and possess a chondrogenic potential, but it remains unclear what types or combinations of signals are required for lineage-specific differentiation and tissue maturation. The overall goal of this dissertation was to investigate how the coordination of biochemical stimuli with cues from mechanical forces and the extracellular matrix regulate the chondrogenesis of bone marrow stromal cells (BMSCs). These studies explored the potential for cyclic tensile loading and chondrogenic factors, TGF-1 and dexamethsone, to promote fibrochondrocyte-specific differentiation of BMSCs. The application of cyclic tensile displacements to cell-seeded fibrin constructs promoted fibrochondrocyte patterns of gene expression and the development of a fibrocartilage-like matrix. These responses were influenced by the specific loading conditions examined and the differentiation state of the BMSCs. Additionally, the roles of integrin adhesion and cytoskeletal organization in BMSC differentiation were examined within engineered hydrogels presenting controlled densities of biomimetic ligands. Adhesion to the arginine-glycine-aspartic acid (RGD) motif inhibited chondrogenesis in a density-dependent manner and was influenced by interactions with the f-actin cytoskeleton. Together, this research provided fundamental insights into the regulatory mechanisms involved in the chondrogenesis of mesenchymal progenitor cells.
399

Systematic Investigation of Hydrogel Material Properties on Cell Responses for Vocal Fold and Vascular Graft Tissue Engineering

Bulick, Allen 14 January 2010 (has links)
The research presented here deals with synthetic materials for application in tissue engineering, primarily poly(ethylene glycol) (PEG) and poly(dimethyl siloxane)star (PDMS)star. Tissue engineering seeks to repair or replace damaged tissue through implantation of cell encapsulated in an artificial scaffold. Cell differentiation and extracellular matrix (ECM) deposition can be influenced through a wide variety of in vitro culture techniques including biochemical stimuli, cell-cell interactions, mechanical conditioning and scaffold physical properties. In order to systematically optimize in vitro conditions for tissue engineering experiments, the individual effects of these different components must be studied. PEG hydrogels are a suitable scaffold for this because of their biocompatibility and biological "blank slate" nature. This dissertation presents data investigating: the effects of glycosaminoglycans (GAGs) as biochemical stimuli on pig vocal fold fibroblasts (PVFfs); the effects of mechanical conditioning and cell-cell interactions on smooth muscle cells (SMCs); and the effects of scaffold physical properties on SMCs. Results show that GAGs influence PVFf behavior and are an important component in scaffold design. Hyaluronic acid (HA) formulations showed similar production in collagen I and III as well as reduced levels of smooth muscle a-actin (SMa-actin), while chondroitin sulfate (CSC) and heparin sulfate showed enriched collagen III environments with enhanced expression of SMa-actin. A physiological flow system was developed to give comprehensive control over in vitro mechanical conditioning on TEVGs. Experiments performed on SMCs involved creating multi-layered TEVGs to mimic natural vascular tissue. Constructs subjected to mechanical conditioning with an endothelial cell (EC) layer showed enhanced expression of SMC differentiation markers calponin h1 and myocardin and enhanced deposition of elastin. Consistent with other studies, EC presence diminished overall collagen production and collagen I, specifically. Novel PDMSstar-PEG hydrogels were studied to investigate the effects of inorganic content on mesenchymal stem cell differentiation for use in TEVGs. Results agree with previous observations showing that a ratio of 5:95 PDMSstar: PEG by weight enhances SMC differentiation markers; however, statistically significant conclusions could not be made. By studying and optimizing in vitro culture conditions including scaffold properties, mechanical conditioning and multi-layered cell-cell interactions, TEVGs can be designed to maximize SMC differentiation and ECM production.
400

The impact of mechanical properties of poly(ethylene glycol) hydrogels on vocal fold fibroblasts' behavior

Liao, Huimin 15 May 2009 (has links)
Vocal fold scarring, caused by injury and inflammation, presents significant treatment challenges. Tissue engineering might be a promising treatment for vocal fold restoration or regeneration. It is important to investigate how scaffold properties alter cell behavior instead of screening thousand of materials, which is fundamental knowledge for rational scaffold design. This work studies how tuning only one parameter, mechanical strength of the hydrogel scaffold, influences the extracellular matrix production of encapsulated porcine vocal fold fibroblast (PVFF). PVFF cells were encapsulated by photopolymerization in 10 wt%, 20 wt%, and 30 wt% poly(ethylene glycol) diacrylate (PEGDA) hydrogels (MW 10,000), with the similar biochemical environment and network structure but different mechanical properties. Cell adhesive peptide, RGDS, was grafted into each hydrogel network to mimic a cell adhesive environment. The glycosaminoglycans (GAGs) production per cell increased from 10 wt% to 20 wt%, 30 wt% gels, with an increase in hydrogel stiffness. The collagen production per cell increased from 10 wt% to 20 wt% gels but no further increase occurred with the increasing modulus from 20 wt% to 30 wt% gels. Interestingly, in hydrogels of intermediate modulus (20% PEGDA hydrogels), the highest elastin per cell was observed compared with gels with higher and lower storage modulus after day 30. Histological analysis showed GAGs, collagen and elastin were distributed pericellularly. However, the organization of collagen type I appeared to be influenced by gel mechanical properties, which was confirmed by immunohistological analysis. Furthermore, the immunohistological analysis showed that the phenotype of PVFF is regulated by the stiffness of the PEG hydrogel. This study demonstrates that different levels of VFF ECM formation may be achieved by varying the mechanical properties of PEG hydrogels and validates a systematic and controlled platform for further research of cell-biomaterials interaction.

Page generated in 0.1217 seconds