• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 679
  • 123
  • 72
  • 67
  • 67
  • 56
  • 46
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1493
  • 1493
  • 325
  • 323
  • 277
  • 238
  • 218
  • 161
  • 134
  • 128
  • 127
  • 115
  • 115
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Scaffold Design and Optimization for Osteochondral Interface Tissue Engineering

Khanarian, Nora January 2012 (has links)
A thin layer of calcified cartilage at the native cartilage-to-bone junction facilitates integration between deep zone articular cartilage and subchondral bone, while maintaining the integrity of the two distinct tissue regions. Regeneration of this interface remains a significant clinical challenge for long-term and functional cartilage repair. The strategy for osteochondral interface formation discussed in this thesis focuses on the design and optimization of a biomimetic scaffold for stable calcified cartilage formation. The ideal interface scaffold supports chondrocyte biosynthesis and the formation of calcified cartilage with physiologically-relevant mechanical properties. Furthermore, the interface scaffold allows for osteointegration and the maintenance of the calcified cartilage matrix. It is hypothesized that ceramic presence and zonal chondrocyte interactions regulate cell biosynthesis and mineralization, and these cell-matrix and cell-cell interactions are essential for calcified cartilage formation and maintenance. Biomimetic design parameters for an interface scaffold were determined by characterizing the native interface in terms of mineral and matrix distribution. A composite hydrogel-hydroxyapatite scaffold was then designed to support formation of a functional calcified cartilage matrix. The hydrogel phase maintains the chondrocyte phenotype and allows for incorporation of ceramic particles, while the biomimetic ceramic phase is osteointegrative and decreases the need for cell-mediated mineralization. This scaffold was optimized <italic>in vitro</italic> based on hydrogel type, chondrocyte population, and ceramic particle size. The collective findings from these cell-ceramic interaction studies determined that hypertrophic chondrocytes, cultured in the presence of micron-sized hydroxyapatite particles, exhibit enhanced hypertrophy and matrix deposition. Scaffold ceramic dose and seeding density were also optimized for promoting calcified cartilage formation <italic>in vitro</italic>. In order to implement the scaffold for integrative cartilage repair, a scaffold was designed to regenerate both uncalcified and calcified cartilage on a bilayered hydrogel scaffold. Furthermore, a polymer-ceramic nanofiber component was added to augment the original design for <italic>in vivo</italic> implementation. The hydrogel-nanofiber composite scaffold was evaluated <italic>in vivo</italic> and found to support mineralization and osteointegration within the bone region while preventing endochondral ossification within the repair tissue. Finally, inspired by the stratified organization of zonal chondrocyte populations above the calcified cartilage interface, the layered hydrogel model was used to determine the role of zonal chondrocyte organization on calcified cartilage stability. This thesis collectively explores cell-ceramic and cell-cell interactions, and their ramifications for calcified cartilage formation and maintenance. Specifically, ceramic presence promotes the deposition of a calcified cartilage matrix by hypertrophic chondrocytes in a dose-dependent manner, and furthermore, communication between surface zone and deep zone chondrocyte populations suppresses mineralization within articular cartilage above the calcified cartilage interface. It is anticipated that the scaffold design strategy developed in this thesis can also be applied to the regeneration of other complex interfaces where there are transitions from soft-to-hard tissue.
352

Human Tissue Engineered Model of Myocardial Ischemia-Reperfusion Injury

Chen, Timothy Han January 2018 (has links)
Timely reperfusion after a myocardial infarction is necessary to salvage the ischemic region; however, reperfusion itself is a major contributor to the final tissue damage. Currently, there is no clinically relevant therapy available to reduce ischemia-reperfusion injury. While many drugs have shown promise in reducing ischemia-reperfusion injury in preclinical studies, none of these drugs have demonstrated benefit in large clinical trials. Part of the failure to translate therapies can be attributed to the reliance on small animal models for preclinical studies. While animal models encapsulate the complexity of the systemic in vivo environment, they do not fully recapitulate human cardiac physiology. In this thesis, we utilized cardiac tissue engineering methods in conjunction with cardiomyocytes derived from human induced pluripotent stem cells, to establish a biomimetic human tissue-engineered model of ischemia-reperfusion injury. The resulting cardiac constructs were subjected to simulated ischemia or ischemia-reperfusion injury in vitro. We demonstrated that the presence of reperfusion injury can be detected and distinguished from ischemic injury. Furthermore, we demonstrated that we were able to detect changes in reperfusion injury in our model following ischemic preconditioning, modification of reperfusion conditions, and addition of cardioprotective therapeutics. This work establishes the utility of the human tissue model in studying ischemia-reperfusion injury and the potential of the human tissue platform to help translate therapeutic strategies into the clinical setting.
353

In vitro microphysiological system for modeling vascular disease

Ji, Hayeun January 2018 (has links)
In vitro microphysiological system utilizes engineered tissue constructs from human cells to model functional activity of human tissues or organs in both healthy and diseased state, thereby providing a more accurate drug screening than animal models prior to clinical trials. One essential component of an in vitro microphysiological system is a tissue engineered blood vessel (TEBV) that can accurately recapitulate the functional vasculature in vivo. This thesis first explores two most important considerations to a successful TEBV generation, the cell source and the fabrication method. To engineer a vascular tissue construct, an ideal cell source should demonstrate high availability and accurate vessel functionality. Mesenchymal stem cells (MSC) were explored due to their high availability, proliferation capacity, and capability to deposit adequate extracellular matrix (ECM) for cell sheet formation. Vascular smooth muscle cells (SMC) are the cell components that comprise the medial layer of native blood vessel, and thus optimal for demonstrating equivalent biological functionality. However, SMC are much harder to acquire through biopsy, and they have limited proliferative capacity and quick senescence. Therefore, an alternative cell source for SMC was obtained through direct reprogramming approach involving the induced overexpression of myocardin in more readily available human cell sources. The resulting reprogrammed SMC demonstrated close resemblance to the native SMC in terms of its phenotype, related gene and protein expression levels, and contractile function. Two different fabrication methods, nanopatterned cell sheets and dense collagen hydrogel, were explored to engineer a 1 mm inner diameter blood vessel. The fabricated TEBVs were then compared to that of the native blood vessel and each other in terms of its structure, mechanical properties, and vasoactive function in response to stimuli. After selecting the most optimal cell source and fabrication method for developing a human cell-based TEBV for in vitro microphysiological system, the second part of this thesis assesses the capability of the designed TEBV to model a vascular disease for drug screening purposes. Marfan syndrome was selected as a model vascular disease due to its previous history of contradictory results from the animal models and human clinical trials using losartan, an angiotensin II receptor blocker, in terms of preventing aortic root dilation. TEBV fabricated using reprogrammed SMC from Marfan syndrome patient sample and dense collagen hydrogel showed reduced fibrillin deposition, increased vessel diameter and thickness, and reduced vasoconstriction levels when compared to the wild type TEBV, which is consistent with that observed in native vessels of Marfan syndrome patients. Losartan improved the function of Marfan syndrome TEBV, but still at reduced level when compared to that of the wild type. SB203580, a selective inhibitor of p53 MAPK that has been shown to be a better drug candidate than losartan in recent cell-based studies, showed improved TEBV function comparable to that of the wild type. In overall, this thesis presents a successful development of a highly robust, patient-specific in vitro vascular model. An accurate recapitulation of a drug-induced physiological response in humans can speed up the drug screening process with higher efficiency, and this will eventually increase the chances of successful treatment for patients.
354

Tissue Engineering Strategies for Fibrocartilage Interface Regeneration

Qu, Dovina January 2019 (has links)
Ligament and tendon injuries remain a persistent clinical challenge, accounting for up to 45% of the 32 million musculoskeletal injuries reported in the U.S. each year. However, current soft tissue repair and reconstruction techniques are limited by insufficient integration with subchondral bone, potentially leading to graft failure and suboptimal functional outcomes. Therefore, there is a pressing clinical need for functional solutions that can enable integrative soft tissue reconstruction via regeneration of the fibrocartilaginous insertion present at the junction between bone and major ligaments and tendons. This fibrocartilaginous enthesis consists of compositionally distinct but structurally continuous tissue regions (non-calcified and calcified fibrocartilage), and it plays a critical role in mediating complex load transfer between soft tissue and bone while minimizing the formation of stress concentrations at the insertion. Given the functional significance of the insertion site and using the anterior cruciate ligament (ACL) as a model tissue, the objective of this thesis is identify and optimize tissue engineering strategies for regeneration of the fibrocartilaginous interface. Thus, the studies detailed in this thesis consist of elucidation of key interface characteristics that can inform interface scaffold design, identification of an optimal cell source, and optimization of chemical and physical stimuli for fibrocartilage formation. To guide biomimetic scaffold design, this thesis began with quantitative mapping of the compositional and structural properties of the native ligament-to-bone interface. As both the aligned collagen matrix structure and distinctive mineral distribution pattern across the insertion were shown to be highly conserved over time, an ideal scaffold for fibrocartilage interface regeneration should therefore consist of aligned fibers and must be able to support the formation of both non-mineralized and mineralized fibrocartilage tissues. Additionally, evaluation of ex vivo behavior of insertion fibrochondrocytes cultured on aligned nanofiber scaffolds indicated that an ideal system for fibrocartilage regeneration should also support cell-mediated deposition of both types I and II collagen as well as proteoglycans. Comparison of potential cell sources for fibrocartilage tissue engineering showed that synovium-derived mesenchymal stem cells (SDSCs) exhibited higher proliferative and fibrochondrogenic differentiation potential compared to bone marrow-derived mesenchymal stem cells. Thus, subsequent studies focused on optimization of culture parameters for SDSC-mediated fibrocartilage formation. Nanofiber scaffolds that provided controlled release of transforming growth factor (TGF)-β3, which is known to play a critical role in development of the insertion as well as in scarless healing, were developed to guide SDSC differentiation. Scaffold-mediated TGF-β3 delivery enhanced cell proliferation and matrix synthesis in a dose-dependent manner, resulting in synthesis of fibrocartilaginous matrix consisting of both type I and II collagen as well as proteoglycans. As mechanical loading is known to also play a critical role in insertion development, a custom bioreactor that mimics the complex loads sustained at the interface was also developed. It was shown that the bioreactor simultaneously generated both tensile and compressive stresses and modulated SDSC matrix synthesis, where deposition of fibrocartilaginous matrix was observed on mechanically loaded scaffolds without any additional chemical co-stimulation. Finally, as a functional scaffold for integrative ACL repair must support the establishment of both non-mineralized and mineralized tissue regions, the combined effects of TGF-β3 and hydroxyapatite (HA) on MSC-mediated formation of mineralized fibrocartilage were also explored. The addition of HA nanoparticles to the scaffold was shown to enhance cell proliferation and matrix synthesis and represents a promising strategy for formation of mineralized fibrocartilage. Collectively, these observations delineate the importance of bioinspired chemical and physical stimuli in fibrochondrogenic differentiation, and how they can be optimized for stem cell-mediated interface regeneration. These studies yield valuable scaffold design criteria and establish in vitro culture parameters that can be applied to functional integration of soft connective tissue with bone at various critical attachments throughout the musculoskeletal system, including the ligament and tendon-to-bone entheses, as well as for regeneration of other important fibrocartilaginous tissues.
355

Structural characterisation of aggrecan in cartilaginous tissues and tissue engineered constructs

Craddock, Russell January 2018 (has links)
Collagen II and the proteoglycan aggrecan are key extracellular matrix (ECM) proteins in cartilaginous tissues such as the intervertebral disc (IVD). Given the functional role that these structural and functional proteins have in the IVD, ECM in tissue engineered intervertebral disc (TE IVD) constructs needs to recapitulate native tissue. As such, there is a need to understand the structure and mechanical function of these molecules in native tissue to inform TE strategies. The aims here were to characterise aggrecan and collagen II using atomic force microscopy (AFM), size-exclusion chromatography multi angle light scattering (SEC-MALS), histology, quantitative PCR, nanomechanical and computational modelling in: (i) skeletally immature and mature bovine articular cartilage (AC) and nucleus pulposus (NP), (ii) TE IVD constructs cultured in hypoxia or treated with transforming growth factor beta [TGFÎ23] or growth differentiation factor [GDF6]), and (iii) porcine AC and NP tissue. No variation in collagen II structure was observed although the proportion of organised fibrillar collagen varied between tissues. Both intact (containing all three globular domains) and non-intact (fragmented) aggrecan monomers were isolated from both AC and IVD and TE IVD constructs. Mature intact native NP aggrecan was ~60 nm shorter (core protein length) compared to AC. In skeletally mature bovine NP and AC tissue, most aggrecan monomers were fragmented (99% and 95%, respectively) with fragments smaller and more structurally heterogeneous in NP. Similar fragmentation was observed in skeletally immature bovine AC (99.5%), indicating fragmentation occurs developmentally at an early age. Fragmentation was not a result of enhanced gelatinase activity. Aggrecan monomers isolated from notochordal cell rich porcine NP were also highly fragmented, similar to bovine NP. Application of a computational packing model suggested fragmentation may affect porosity and nutrient transfer. The reduced modulus was greater in AC than NP (497 kPa and 76.7 kPa, respectively) with the difference likely due to the organisation and abundance of ECM molecules, rather than individual structure. Growth factors (GDF6 and TGFÎ23), and not oxygen tension treated TE IVD constructs were structurally (with >95% fragmented monomers), histologically and mechanically (GDF6: 60.2 kPa; TGFÎ23; 69.9 kPa) similar to native NP tissue (76.7 kPa) and there was evidence of gelatinase activity. To conclude, these results show that the ultrastructure of intact aggrecan was tissue and cell dependent, and could be modified by manipulation of cell culture conditions, specifically GDF6 which may play a role in aggrecan glycosylation.
356

Deformation and fracture of soft materials for cartilage tissue engineering

Butcher, Annabel Louise January 2018 (has links)
Damaged cartilage can cause severe pain and restricted mobility, with few long term treatments available. The developing field of tissue engineering offers an alternative to the currently used full joint replacement. Restoring damaged cartilage through tissue engineering would enable an active lifestyle to be recovered and retained, without restrictions to joint mobility. This is increasingly important as the prevalence of osteoarthritis rises. Tissue engineering requires biomaterial scaffolds that mimic the function of the tissue while cells develop, and so the scaffold must provide the appropriate biological, chemical and mechanical stimuli. In this work, methods were developed to enable the design of scaffolds that mimic the microstructure and mechanical properties of articular cartilage. Electrospinning was investigated as a method to mimic the nanoscale collagen fibres within cartilage extracellular matrix. A parametric study was conducted to determine how changes to a gelatin solution affect the mechanical properties of the non-woven fibrous mesh. The solution properties had a clear impact on the morphology of the fibres, but the effect on the mesh mechanical properties was convoluted. The results demonstrated the need for greater understanding of the 3D morphology of electrospun meshes, to establish how these may be altered in order to design scaffolds with desirable mechanical properties. The fracture mechanics of soft materials are complex, and are generally overlooked when designing tissue engineering scaffolds. The complexities have led to a lack of standardised testing, making comparisons between studies impractical. In this work, fracture testing methods were compared, using a viscoelastic polymer to mimic some of the complexities of soft tissue mechanics. Mode III trouser tear tests and mode I pure shear tests were found to provide reliable measurements. Due to the ease of testing small samples, trouser tear testing was concluded to be the most advantageous for determining the fracture resistance of soft tissue engineering scaffolds. Finally, electrospun meshes were combined with hydrogels to create biomimetic scaffolds, which were characterised using tensile and trouser tear fracture tests. Fibre-reinforcement was shown to enhance the mechanical properties of a weak hydrogel, but diminished those of a strong, tough polyacrylamide (PAAm)-alginate hydrogel. The PAAm-alginate hydrogel exhibited mechanical properties close to those of natural articular cartilage, but without the microstructure that would enhance its suitability for use as a cartilage tissue engineering scaffold. An alternative method for reinforcing PAAm-alginate was proposed, which shows promise for producing a biocompatible scaffold that mimics both the mechanics and the microstructure of articular cartilage. Ultimately, this thesis aimed to improve the design of biomimetic scaffolds for cartilage tissue engineering, and advance mechanical characterisation techniques within this field.
357

Modulation of the in vitro mechanical and chemical environment for the optimization of tissue-engineered articular cartilage

Roach, Brendan Leigh January 2017 (has links)
Articular cartilage is the connective tissue lining the ends of long bones, providing a dynamic surface that bears load while providing a smooth surface for articulation. When damaged, however, this tissue exhibits a poor capacity for repair, lacking the lymphatics and vasculature necessary for remodeling. Osteoarthritis (OA), a growing health and economic burden, is the most common disease afflicting the knee joint. Impacting nearly thirty million Americans and responsible for approximately $90 billion in total annual costs, this disease is characterized by a progressive loss of cartilage accompanied by joint pain and dysfunction. Moreover, while generally considered to be a disease of the elderly (65 years and up), evidence suggests the disease may be traced to joint injuries in young, active individuals, of whom nearly 50% will develop signs of OA within 20 years of the injury. For these reasons, significant research efforts are directed at developing tissue-engineered cartilage as a cell-based approach to articular cartilage repair. Clinical success, however, will depend on the ability of tissue-engineered cartilage to survive and thrive in a milieu of harsh mechanical and chemical agents. To this end, previous work in our laboratory has focused on growing tissues appropriate for repair of focal defects and entire articular surfaces, thereby investigating the role of mechanical and chemical stimuli in tissue development. While we have had success at producing replacement tissues with certain qualities appropriate for clinical function, engineered cartilage capable of withstanding the full range of insults in vivo has yet to be developed. For this reason, and in an effort to address this shortcoming, the work described in this dissertation aims to (1) further characterize and (2) optimize the response of tissue-engineered cartilage to physical loading and the concomitant chemical insult found in the injured or diseased diarthrodial joint, as well as (3) provide a clinically relevant strategy for joint resurfacing. Together, this holistic approach maximizes the chances for in vivo success of tissue-engineered cartilage. Regular joint movement and dynamic loads are important for the maintenance of healthy articular cartilage. Extensive work has been done demonstrating the impact of mechanical load on the composition of the extracellular matrix and the biosynthetic activity of resident chondrocytes in explant cultures as well as in tissue-engineered cartilage. In further characterizing the response of tissue-engineered cartilage to mechanical load, the work in this dissertation demonstrated the impact of displacement-controlled and load-controlled stimulation on the mechanical and biochemical properties of engineered cartilage. Additionally, these studies captured tension-compression nonlinearity in tissue-engineered cartilage, highlighting the role of the proteoglycan-collagen network in the ability to withstand dynamic loads in vivo, and optimized a commercial bioreactor for use with engineered cartilage. The deleterious chemical environment of the diseased joint is also well investigated. It is therefore essential to consider the impact of pro-inflammatory cytokines on the mechanical and biochemical development of tissue-engineered cartilage, as chemical injury is known to promote degradation of extracellular matrix constituents and ultimately failure of the tissue. Combining expertise in interleukin-1\alpha, dexamethasone, and drug delivery systems, a dexamethasone drug delivery system was developed and demonstrated to provide chondroprotection for tissue-engineered cartilage in the presence of supraphysiologic doses of pro-inflammatory cytokines. These results highlight the clinical relevance of this approach and indicate potential success as a therapeutic strategy. Clinical success, however, will not only be determined by the mechanical and biochemical properties of tissue-engineered cartilage. For engineered cartilage to bear loads in vivo, it is necessary to match the natural topology of the articular surface, recapitulating normal contact geometries and load distribution across the joint. To ensure success, a method for fabricating a bilayered engineered construct with biofidelic cartilage and subchondral bone curvatures was developed. This approach aims to create a cell-based cartilage replacement that restores joint congruencies, normalizes load distributions across the joint, and serves as a potential platform for the repair of both focal defects and full joint surfaces. The research described in this dissertation more fully characterizes the benefits of mechanical stimulation, prescribes a method for chondroprotection in vivo, and provides a strategy for creating a cartilage replacement that perfectly matches the native architecture of the knee, thus laying the groundwork for clinical success of tissue-engineered cartilage.
358

Solvent Dependent Molecular Mechanics: A Case Study Using Type I Collagen

Harper, Heather 03 April 2014 (has links)
Being the most abundant protein in the body, by mass, type I collagen provides the building blocks for tissues such as bone, extra-cellular matrix, tendons, cornea, etc[1-3]. The ability of a single protein to create structures with such various mechanical properties is not fully understood. Before one can engineer and assemble a complex tissue, such as cornea, the mechanisms underlying the formation and assembly, mechanical properties, and structure must be investigated and quantified. The work presented herein contains an extensive study of Type I collagen from the molecular to the tissue level. The engineering of collagenous tissues that mimic the mechanical and optical properties of native human cornea have been performed by a number of groups[4-7]. In all of these studies, the corneal-mimicking tissues have been created using a number of methods including repeated flow casting. To date, the ability to create self-assembled corneal tissue has not been achieved. Understanding the mechanisms of formation of native cornea will not only bring us closer to achieving self-assembled transplantable corneal tissue but will also aid in the engineering of all collagenous tissues and other structures comprised of filamentous units. Recently, the study of type I collagen has primarily focused on the tissue, fiber, and fibril scale[2, 8-21]. Grant, et al.[20] measured the elastic modulus of collagen fibrils in various solutions and found that by increasing ion concentration, in the solution around the fibril, the elastic modulus increased. The solution dependent behavior of the elastic modulus of collagen fibrils was measured but the cause of the dependence was unknown. Grant et al. state that due to the complex nature of the interactions between collagen fibrils and aqueous solutions, the exact cause of this effect is difficult to determine. Through work presented herein, not only do we show that this behavior is seen at the molecular level but also quantify the relationship between ionic concentration and molecular stiffness for a variety of ionic species. Studies of collagen mechanics, on the molecular level, are brief[22-26]. The most prominent of these studies in recent years was performed by Sun, et al.[27] wherein a persistence length of 14.5nm, for human type I procollagen, was measured. The persistence length of the molecule, which is a measure of flexibility, is a highly debated topic with quoted values of 14.5nm[27], 57nm[28], 130nm[29], 175nm[30], 308nm[31], and 544nm[32]. The broad range of values indicates that the flexibility of the collagen molecule is a complex question. It became apparent that the disagreement of the persistence length of molecular collagen in the literature may be due to the use of different ionic solutions. To address this, an initial atomic force microscope, AFM, study of the persistence length of molecular collagen diluted in DI water and two ionic solutions was conducted. This study showed that there is a strong solution dependence to the flexibility of the molecule. The ionic solutions presented molecules with a large persistence length, a straightened configuration, while the DI water dilution resulted in a persistence length that was a factor of 10 smaller. Because two different complex ionic solutions in the initial study showed different persistence lengths, an evaluation of the effect of each individual salt was performed. To elucidate the effects of individual ionic species on the conformations and persistence length of Type I collagen varying concentration of monovalent and divalent salts with different cations and anions were tested. It was found that increasing ionic concentration for all species types resulted in a higher persistence length but the rate of change in persistence length as a function of concentration is unique to each species. In 2002 Leikina, et at.[33] suggested that Type I molecular collagen is unstable at body temperature using differential scanning calorimetry. To examine these results, an AFM study was performed that imaged the collagen molecules after being held at body temperature for varying times. The density of molecules deposited onto mica, above a 200nm length cutoff, was calculated and it shows that the number of molecules above 200nm in length decreases with increasing incubation time. These environmental studies were performed with an aim to understanding the role of environment in creating a corneal mimicking tissue. Currently, the most promising method of collagen membrane fabrication for corneal replacement was developed by Tanaka, et al.[4]. This unique repeated flow casting method allows for the manufacturing of transparent collagen membranes with controllable thickness and fibrillar alignment. Using the repeated flow casting technique, orthogonally oriented collagen membranes were created and their optical properties were measured using the Generalized High Accuracy Universal Polarimeter, G-HAUP. When engineering a tissue for the eye, the optical properties of the tissue are of the utmost importance. Appropriately for corneal tissues, the measurements for linear birefringence and linear dichroism were negligible. It was clear, from the literature, that a fundamental understanding of molecular type I collagen was not available. In this work, the mechanical properties and environmentally sensitive behavior of bovine dermal type I molecular collagen is studied. The exploration into the unique behavior of these systems begins with documenting the rich ionic species and concentration dependent flexibility of molecular type I collagen and the temperature dependence on the stability of the molecule is tested. The study concludes with the construction of corneal mimicking tissues using the repeated flow casting method and measuring the complex optical properties of these tissues.
359

A Study on the Applications and Toxicity Assessments of Carbon Nanotubes in Tissue Engineering

Baktur, Rena 01 May 2011 (has links)
Carbon nanotubes (CNTs) are one of the most popular nanomaterials. There has been increasing interest in the development and applications of carbon nanotubes due to their huge potential in industrial and medical applications. Recent applications of carbon nanotubes include development of scaffolds and drug delivery systems. Despite rapidly emerging applications of CNTs, little is known about the impact of CNTs on cellular processes, especially mesenchymal stem cell (MSC)'s differentiation. Also, the effects of nanoparticle exposure under different conditions on cellular responses have not been well characterized yet. To characterize the effects of CNTs on creating nanoscale scaffolds for tissue engineering, we incorporated multi-walled CNTs (MWCNTs) into reconstituted type I collagen, and evaluated proliferation, differentiation, mineralization and inflammatory response of MSC on those scaffolds. MWCNTs were homogeneously distributed in collagen matrix, and strongly entrapped in collagen at the concentrations below 100 ppm. Alkaline phosphatase (AP) activity and mineralized nodules of extracellular matrix (ECM) were monitored as osteogenic differentiation markers. AP activity was significantly increased in 12 days after being replaced by differentiating media. Collagen enhanced AP activity, and MWCNT-collagen scaffolds induced additional increase in AP activity. The MSC released a significantly higher level of AP on MWCNT-collagen scaffolds than the plastic surface did at day 16. An increasing percentage of ECM mineralization was seen at day 16 after being replaced by differentiating media in the presence of MWCNT-collagen scaffolds. This study indicated the possibility of enhancement in MSC differentiation in the MWCNT-collagen scaffolds. The increased level of differentiation markers was due to the increased stiffness of the scaffolds for MSC. Our data indicated that the collagen-MWCNT scaffolds might have the potential application to create nanoscale scaffold materials for tissue engineering. To illustrate the effects of interleukin-8 (IL-8) expression in human alveolar epithelial cells (A549) under various exposure conditions of CNT, we measured the level of IL-8 expression in the presence and absence of serum following exposure of SWCNTs. The results demonstrated that the IL-8 expression was enhanced in the presence of serum. The IL-8 expression kept increasing at low concentration even after removing SWCNTs from the media. Further studies are required to characterize biological functions and toxicological potentials of nanomaterials.
360

Conception et développement d’hydrogels pour l’ingénierie tissulaire appliquée au tissu osseux / Design and development of hydrogels for bone tissue engineering

Maisani, Mathieu 22 September 2017 (has links)
Le besoin clinique de nouvelles stratégies pour pallier les limites des techniques actuelles dans le cas de régénération osseuse a permis l’émergence de l’ingénierie tissulaire osseuse. Les stratégies basées sur les techniques d’ingénierie tissulaire semblent être une alternative à l’utilisation de greffes et ainsi de s’affranchir des limites qu’elles présentent. L’approche adoptée dans le cadre de cette thèse consiste en le développement et l’utilisation d’hydrogels comme matériaux d’échafaudage pour le comblement et la régénération de tissus osseux. De nombreuses approches utilisant elles aussi des hydrogels existent, chacune possède ses avantages et limites. Dans ce contexte, nos travaux ont consisté en l’utilisation d’un hydrogel non-polymérique comme matériau de base dans le développement des stratégies. Brièvement, plusieurs types cellulaires sont présents au sein du tissu osseux et vont participer aux processus de formation et de régénération osseuse. L’objectif de nos stratégies a été l’apport de cellules souches exogènes puis leur différenciation en cellules ostéoformatrices, ou le recrutement et la différenciation des cellules de l’hôte en cellules ostéoformatrices. Le gel de GNF a été utilisé comme matrice tridimensionnelle pour ses propriétés d’injectabilité, de gélification en l’absence d’agent de réticulation toxique et son potentiel ostéoinducteur. Ce travail a consisté au développement de stratégies pour l’ingénierie tissulaire osseuse en associant le gel de GNF à une matrice naturelle de collagène cellularisée ou à des molécules bioactives pour promouvoir la régénération de lésions osseuses. Ces travaux ont permis de développer et caractériser des stratégies pertinentes pour la régénération de lésions osseuses basées sur l’utilisation d’hydrogels. / New strategies to overcome the clinical limitations of current techniques for bone defect filling and regeneration has led to the involvement of bone tissue engineering. Indeed, strategies based on tissue engineering techniques seem to be an alternative to the use of grafts and thus to defeat their limits. The approach employed in this thesis consists in development and use of hydrogels as scaffold materials for bone defect filling and regeneration. There are many approaches that also use hydrogels, each one with its advantages and limitations. In this context, our work consisted in the use of a non-polymeric hydrogel as basic material in the development of strategies for bone tissue engineering. Briefly, several cell types are present within bone tissue and will participate in the processes of bone formation and regeneration. The objective of our strategies was the contribution of exogenous stem cells and then their differentiation into osteogenic cells or the recruitment and differentiation of the host cells into osteogenic cells within the material. The GNF gel was used as a three-dimensional matrix considering its properties of injectability, gelation in the absence of toxic crosslinking agent and its osteoinductive potential. The goal was to develop strategies for bone tissue engineering by combining the GNF gel with a natural matrix of cellular collagen or bioactive molecules to promote the regeneration of bone lesions. This work allowed to develop and characterize strategies relevant to the regeneration of bone lesions based on the use of hydrogels.

Page generated in 0.097 seconds