• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 110
  • 31
  • 18
  • 14
  • 14
  • 14
  • 13
  • 11
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 417
  • 417
  • 106
  • 73
  • 68
  • 65
  • 60
  • 59
  • 50
  • 43
  • 42
  • 38
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Thermomechanical cycling investigation of CU particulate and NITI reinforced lead-free solder

Horton, W. Scott. 09 1900 (has links)
In todayâ s Flip Chip (FC) and Ball Grid Array (BGA) electronic packages solder joints provide both the electrical as well as the mechanical connections between the silicon chip and the substrate. Due to coefficient of thermal expansion (CTE) differences between the chip and substrate the solder joints undergo thermomechanical stresses and strains as an electronic package is heated and cooled with power on/off cycles. Advances in chip designs result in chips that are larger, run hotter and demand improved resistance to creep and low-cycle fatigue in the solder joints. In this study the strengthening of these joints with two different reinforcements is explored: a hard particulate and a shape memory alloy (SMA) single fiber composite (SFC). A baseline is established with a SnAgCu solder that is then compared to test runs on the same solder matrix with Copper particles and then the SMA, Nickel- Titanium wire as reinforcements.
112

Recycling of titanium alloys from machining chips using equal channel angular pressing

Shi, Qi (Alex) January 2015 (has links)
During the traditional manufacturing route, there are large amount of titanium alloys wasted in the form of machining chips. The conventional recycling methods require high energy consumption and capital cost. Equal channel angular pressing (ECAP), one of the severe plastic deformation techniques, has been developed to recycle the metallic machining chips. The purpose of the PhD work is to realize the ECAP recycling of titanium alloys, in particular Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn, and investigate the effects of processing parameters on the resultant relative density, microstructure evolution, texture development and microhardness homogeneity. The microstructures of Ti-6Al-4V and Ti-15V-3Cr-3Al-3Sn machining chips obtained from conventional turning (CT) and ultrasonically assisted turning (UAT) were initially investigated. It was found that ultrafine grains were formed in the primary and secondary shear zones. For Ti-6Al-4V chips, the β phase in the shear zones was refined into nano-sized equiaxed grains and aligned up to form banded structures. For Ti-15V-3Cr-3Al-3Sn chips, the nano-crystalline grains were enveloped in the shear zones and have clear boundaries to the surrounding matrix. It was observed that in terms of microstructure, there is no significant difference between CT and UAT chips. Recycling of Ti-6Al-4V machining chips was carried out at moderate temperatures with various back-pressures. For single-pass samples, the relative density was increased with the applied back-pressure and operating temperature. It was found that after multiple passes, near fully dense recycled Ti-6Al-4V can be fabricated. The microstructure observations showed that the nano-sized equiaxed and elongated grains co-existed with relatively coarser lamellar structures which were initially refined after the first pass. In the subsequent passes, the fraction of equiaxed nano-grains increased with the number of passes. The original β phase banded structures were fragmented into individual nano-sized grains randomly distributed within α matrix. The chip boundaries were eliminated and nano-crystalline microstructure region was observed at the chip/chip interface after multiple passes. In the sample processed at 550 °C, < a →+c → > type dislocations were observed and oxide layer at chip/chip interface was detected. The texture evolution was investigated using electron backscatter diffraction. It was found that the recycled samples performed a strong basal texture along the normal to ECAP inclination direction after the first pass. After multiple passes, in addition to the normal to inclination direction, the recycled Ti-6Al-4V exhibits a basal texture towards the transverse direction. Microhardness mapping showed that the average hardness and degree of homogeneity were increased with number of passes, while the imposed back-pressure had little effect on the average value and homogeneity. Recycling of Ti-15V-3Cr-3Al-3Sn machining chips was implemented using similar ECAP conditions. The effects of processing parameters, such as back-pressure, operating temperature and number of passes, on the relative density were similar to those for Ti-6Al-4V. Microstructural characterization showed that equiaxed instead of needle shaped α precipitates formed in the β matrix due to the high dislocation density and sub-grain boundaries introduced during ECAP. In terms of microhardness, the maximum hardness was obtained at the specimen pressed at 450 °C. It was found that the applied back-pressure and number of passes enabled to improve the homogeneity, but had little effect on the average hardness.
113

Caractérisation à l'échelle locale des propriétés superélastiques d'alliages de titane massifs et sous forme de revêtements / Local scale characterisation of the superelastic properties of titanium alloys (bulk and coatings)

Jabir, Hamza 16 November 2018 (has links)
La superélasticité (SE) est la capacité d'un alliage à recouvrer sa forme initiale après une importante déformation. Cet effet, dû à une transformation martensitique réversible, est très convoité pour de nombreuses applications biomédicales. Les alliages nickel-titane sont les alliages les plus utilisés dans les applications fonctionnelles nécessitant de la SE. Cependant, l'utilisation de cet alliage dans les dispositifs biomédicaux est controversée par la présence du nickel, considéré comme élément cytotoxique et allergène. De ce fait, ces dernières années, une attention accrue a été portée aux alliages de titane [3-métastable pouvant constituer une alternative pour des applications biomédicales. En effet, ils ont l'avantage d'être élaborés à partir d'éléments biocompatibles et de présenter un comportement SE. L'objectif de cette thèse réside ainsi dans l'étude de la réponse SE des alliages de titane [3-métastable à différentes échelles dans leur forme massive et sous forme de revêtements. Deux alliages [3-métastable ont été élaborés: le Ti-27Nb {% at) et le Ti-24Nb-4Zr-4Sn (% mass). Les propriétés SE de ces alliages à l'état massif ont été caractérisées à l'échelle macroscopique et à l'échelle submicrométrique et comparées à celles du NiTi superélastique et du CP-Ti élasto-plastique. La nanoindentation a d'abord été utilisée pour sonder l'effet SE dans ces alliages massifs à l'échelle locale, et dans un deuxième temps, pour étudier l'effet de l'orientation cristallographique sur la réponse SE et mécanique à l'échelle du grain. Enfin, les propriétés mécaniques et SE de ces alliages sous forme de revêtements ont été évaluées avec ce même procédé de nanoindentation. / The superelasticity is the ability of an alloy to recover its original shape after significant deformation. This effect, due to a reversible stress-induced martensitic transformation, is highly sought after for many biomedical applications. Nickel-titanium alloys that have a very large strain recovery (in bulk and thin film state), are the alloys currently used for functional applications requiring superelasticity. However, the use of this alloy in biomedical devices is controversial by the presence of nickel, considered as allergen and presumed cytotoxic for the body. As a result, in recent years, increased attention has been given to metastable f3 titanium alloys, which may be an alternative for biomedical applications. Indeed, they have the advantage of being elaborated from biocompatible elements and exhibit a superelastic behavior. The objective of this thesis lies in the study of the superelastic response of metastable f3 titanium alloys at different scales in bulk and thin film state. Two metastable f3 titanium alloys were elaborated: Ti-27Nb (at%) alloy and Ti-24Nb-4Zr-8Sn (wt %) alloy. The superelastic properties of these two bulk alloys were characterized at macroscopic and sub-micrometric scale and compared to superelastic NiTi and elastoplastic CP-Ti. The nanoindentation was first used to evaluate the superelastic effect of various bulk titanium alloys at local scale, and in a second time, to study the effect of crystallographic orientations on the superelastic and mechanical responses at the grain scale. Finally, the mechanical and superelastic properties of metastable f3 titanium coatings were evaluated with this same nanoindentation process.
114

Plasma electrolytic oxide coatings on low-modulus [beta]-type titanium alloys : applications to load-bearing orthopaedic implants

Golozar, Mehdi January 2015 (has links)
No description available.
115

Efeito do oxigênio intersticial no módulo de elasticidade de Ligas Ti-15Mo-xZr(x=5,10,15%p) /

Vicente, Fábio Bossoi. January 2014 (has links)
Orientador: Carlos Roberto Grandini / Banca: Luiz Geraldo Vaz / Banca: Daniel Aparecida Pereira Reis / Banca: Alfeu Saraiva Ramos / Banca: Estevão Tomomitsu Kimpara / Resumo: O desenvolvimento biomateriais metálicos para uso ortopédico depende muito da região corpórea pretendida. Para próteses ortopédicas, espera-se que um biomaterial seja biocompatível, não-cancerígeno, resistente à corrosão e possua baixo desgaste. Estas propriedades são todas dependentes da superfície do material. Além destas propriedades espera-se que a prótese tenha baixo módulo de elasticidade, que é uma propriedade do "bulk", do material. Neste trabalho, ligs do sistema temário Ti-15Mo-xZr(x=5,10,e15%p) foram estudadas em função da concentração do elemento substitucional e em função do oxigênio intersticial, para a compreensão dos mecanismos metalúrgicos e subsequente redução do módulo elástico, relacionando a resposta mecânica das ligs com suas microestruturas. Para fundamentar a discussão, a qualidade das amostras foi verificada por análise química quantitativa, análise de gases e EDS. Estas análises iniciais comprovaram que a estequiometria das amostras está satisfatória e o processo de fusão produziu ligas homogênicas. Para o relacionamento entre propriedades mecânicas e microestrutura foram realizadas medidas de difração de raios X, análise pelo método de Rietveld, microscopia óptica e eletrônica de varredura, microdureza, módulo estático e atrito interno. As ligas possuem predominantemente fase B (com estrutura cúbica de corpo centrado), com pequenas concentrações da fase martensitica (com estrutura hexagonal compacta) nas amostras com maiores concentrações de oxigênio em solução sólida. De modo geral a adição do oxigênio aumenta a dureza das ligas, em função da dificuldade de movimentos das discordâncias, fazendo com que a dureza aumente com a concentração desse soluto. Nos ensaios realizados, não se observa alteração significativa no módulo elástico em função da concentração de oxigênio, que se mostrou mais sensível aos tratamentos termomecânicos submetidos... / Abstract: The development of metallic biomaterials for orthopedic applications is highly dependent on the body part under consideration. Biomaterils used in orthopedic prostheses should be biocampatible, noncarcinogenic, and corrosion resistant, with low wear rates; these properties are dependent on the surface characteristics of the materials. In additon, a prosthesis should have a low modulus of elasticity, which is a property of material bulk. In this work, the ternary Ti-15Mo-xZr (x=5, 10 and 15 wt%) alloys are studied as a function of the concentration of substitutional and interstitial elements in order to understand the metallurgical mechanisms and subsequent reduction of the elastic modulus, relating the mechanical properties of the alloys with their microstructures. Initially, the quality of the samples was verified via quantitative chemical analysis, gas analysis, and EDS. These initial analyses showed that the stoichiometry of the samples was satisfactory and that the melting process produced homogeneous allys without any precipitate. The following were performed in order to examine the relationship between the mechanical properties of the alloys and their microstructures: X-ray diffraction with Rietveld analysis: optical and electron scanning microscopy: and investigations of hardness, elastic modulus (using impulse excitation), and internal friction. The alloys were found to comprise predominantly B phase (with body-centered cubic structure), with small concentrations of martensitic phase (with hexagonal compact structure), after quenching the samples in an oxygen-controlled atmosphere. In general, an increase in oxygen concentration makes it difficult for dislocations to move, thereby increasing the hardness of the alloys. No significant change was observed in the elastic modulus as a function of oxygen concentration in the conducted tests; this property was found to be more sensitive to thermomechanical treatments. Nonetheless, the... / Mestre
116

Efeito de elementos intersticiais nas propriedades físicas e biocompatibilidade da liga 'TI'-13'NB'-13'ZR'

Niemeyer, Terlize Cristina [UNESP] 26 February 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:04Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-02-26Bitstream added on 2014-06-13T20:01:32Z : No. of bitstreams: 1 niemeyer_tc_dr_bauru_prot.pdf: 10029057 bytes, checksum: 3ac5908be67e3c306a1cafefcb993eea (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As propriedades mecânicas da liga 'TI'-13'NB'-13'ZR' (TNZ) são modificadas de maneira significativa com a presença de elementos intersticiais tais como oxigênio, carbono, nitrogênio e hidrogênio, principalmente suas propriedades elásticas, causando endurecimento ou fragilização da liga. Este trabalho mostra o estudo da influência do oxigênio nas propriedades da liga TNZ através de medidas de espectroscopia mecânica, usando um pêndulo de torção operando em frequências que variam de 4 a 21 'HZ' e temperatura entre 90 a 700 K. Pode-se observar uma estrutura de relaxação composta por um pico em torno de 150 K que foi associado à reorientação induzida por tensão de átomos de hidrogênio ao redor de átomos oxigênio aprisionados nas vizinhanças de átomos da matriz metálica (par O-H). Foi identificado também um aumento na capacidade de amortecimento na região de alta temperatura, típico de amostras que foram submetidas a tratamentos termomecânicos. Também foi observado que as dopagens causam uma mudança na capacidade de amortecimento, pois a introdução de oxigênio distorce o reticulado cristalino. Uma vez que a liga TNZ é utlizada em implantes ortopédicos, foram realizados ensaios de biocampatibilidade in vitro. No teste de citotoxicidade indireta, nehuma das amostras estudadas apresentou efeito tóxico para as células, mesmo após as dopagens. Foram realizados ensaios de corrosão onde foi observado que, com a dopagem de oxigênio, houve um pequeno deslocamento do potencial de corrosão para valores menos positivos. Porém, foi verificada uma redução significativa da corrente anódica, mostrando que a velocidade de corrosão diminui quando a dopagem é realizada. A introdução de oxigênio diminu o módulo de elasticidade, o que é interessante para ligas utilizadas em implantes ortopédicos. / The mechanical properties of the 'TI'-13'NB'-13'ZR' (TNZ) alloy are modified in significant way with the presence of interstitial elemensts such as oxygen, caborn, nitrogen and hidrogen, mainly its elastic properties, causing the hardening or softening of the alloy. This work shows the study of the oxygen influence on the properties of TNZ alloy by mechanical spectroscopy measurements, using a torsion pendulum operating at frequencies ranging from 4 to 21 'HZ' and temperature between 90 and 700 K. It can be observed a relaxation structure composed by a peak around 150 K that had been associated to the stress induced ordering of hydrogen atoms around oxygen atoms trapped in the neighborhood of atoms of the metllic matrix (O-H pair). It was identified an increase in the damping capacity in the high temperature region, typical of samples that was submitted to thermomechanical treatments. It was also observed that the oxygen charges caused a change in the damping capacity, because oxygen introducing distorts crystalline lattice. Once the TNZ alloy is used in orthopedic implants, it had benn made in vitro biocompatibility measurements. In the cytotoxicity indirect test, none of the samples presented toxic effect for cells, even after oxygen charges. It had been made corrosin assays wehe was observed that, with the oxygen charge, had a small displacement of the corrosin potential for less positives values. However, it was verified a sgnificant reduction in the anodic current, showing that the corrosin velocity decrease when dopping is made. The oxygen introduction decreases the elasticity modulus, what is interesting for orthopedic implants alloys.
117

Estudo de tratamentos térmicos da liga Ti-15Zr-xMo / A study of the heat treatments in a Ti-15Zr-xMo alloy

Xavier, Caio Castanho [UNESP] 02 March 2017 (has links)
Submitted by Caio Castanho Xavier null (caiounesp@yahoo.com.br) on 2017-03-29T19:19:39Z No. of bitstreams: 1 Dissertação_versãofinal - Caio.pdf: 9229661 bytes, checksum: 257b6490f51832d9a3dc4786567f81c1 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-30T18:09:19Z (GMT) No. of bitstreams: 1 xavier_cc_me_bauru.pdf: 9229661 bytes, checksum: 257b6490f51832d9a3dc4786567f81c1 (MD5) / Made available in DSpace on 2017-03-30T18:09:19Z (GMT). No. of bitstreams: 1 xavier_cc_me_bauru.pdf: 9229661 bytes, checksum: 257b6490f51832d9a3dc4786567f81c1 (MD5) Previous issue date: 2017-03-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O titânio, e as ligas baseadas nesse elemento, são amplamente utilizados como biomateriais, com aplicações tanto como implantes dentários quanto ortopédicos. Para isso, apresentam características importantes como: biocompatibilidade, resistência à corrosão, em geral baixo módulo de elasticidade e baixa densidade. O titânio possui uma temperatura de transformação alotrópica, que propicia o controle das propriedades da liga pela manipulação de sua microestrutura, através da adição de elementos de liga e/ou tratamentos térmicos. De fato, para ligas de titânio com uma composição definida, a realização de tratamentos térmicos, permite modificar a microestrutura da liga e, consequentemente, modificar as propriedades mecânicas do material em questão, fator essencial para o estudo em aplicações como um implante médico. O presente trabalho tem como objetivo o estudo detalhado de diferentes tipos de tratamentos térmicos de ligas do sistema Ti-Zr-Mo. Diferente de outros trabalhos da literatura, o estudo foi feito para cada tratamento térmico separadamente, analisando a microestrutura e a microdureza das ligas visando uma aplicação biomédica. Primeiramente, as ligas foram fundidas em um forno de fusão à arco voltaico, com quatro composições diferentes de liga: Ti-15Zr, Ti-15Zr-5Mo, Ti-15Zr-10Mo e Ti-15Zr-15Mo. Dessa maneira, pretendeu-se obter amostras com microestruturas de fase α, α+β e β. Através de uma análise por EDS, um estudo sobre a composição química das amostras foi realizado, sendo que, determinou-se que as ligas foram fundidas com uma boa qualidade e sem a presença de aglomerados ou segregados. A análise microestrutural foi realizada a partir de microscopias óptica e eletrônica de varredura. Para a liga Ti-15Zr, foi possível observar apenas a presença de uma estrutura acicular de fase α. Por outro lado, a liga Ti-15Zr-5Mo possui uma microestrutura de matriz β com finas agulhas de fase α nos contornos de grão. As ligas Ti-15Zr-10Mo e Ti-15Zr-15Mo apresentaram somente contorno de grão do tipo β. Para os tratamentos térmicos, houve um aumento de fase α nas condições tratadas por 600°C. No entanto, os tratamentos térmicos de 900°C e 1000°C demonstraram uma variação de fase na liga dependente do tipo de resfriamento realizado, onde o resfriamento lento obteve um crescimento de fase α. Através da análise da microdureza, percebe-se que em geral houve um aumento nos valores com o acréscimo de Mo e fase β na liga, sendo que, a liga Ti-15Zr apresentou uma microdureza entre 282-327 HV; a liga Ti-15Zr-5Mo de 331-390 HV; Ti-15Zr-10Mo apresentou valores entre 389-432 HV e a Ti15Zr-15Mo de 343-433 HV. / The element titanium and its alloys are widely used as biomaterials with applications in both dental implants as in orthopedics materials. Therefore, important features are required such as: biocompatibility, corrosion resistance, low values of Young modulus and low density. Also, titanium has an allotropic transformation temperature, which provides controlling the mechanical properties of the alloy. A microstructure manipulation can be achieved by the addition of certain alloying elements and heat treatments. In fact, for titanium alloys with a defined composition, heat treatments allow microstructure modification, hence alteration in the mechanical properties of the material, an essential subject for the study of medical implants applications. This study provides a detailed study of heat treatment conditions in a Ti-Zr-Mo system alloy. Unlike other papers in the literature, this study was done for each heat treatment separately, analyzing the microstructure and microhardness of the alloys for a biomedical application. First, the alloys were melted in an arc voltaic furnace, with four different alloys compositions: Ti-15Zr, Ti-15Zr-5Mo, Ti-15Zr-10Mo and Ti-15Zr-15Mo. In order to obtain samples with α, α+β and β phase microstructures. Through EDS analysis, a study on the chemical composition of the samples was performed. It was determined that the alloys were cast with good quality and without the presence of agglomerates or segregates. Microstructural analysis with optical microscopy and scanning electron was realized. For Ti-15Zr alloy, it was only possible to observe the presence of a lamellar structure composed of α phase. On the other hand, the Ti-15Zr-5Mo alloy has a microstructure of a β phase matrix with fine needle of α phases at the grain boundaries. The Ti-15Zr-10Mo and Ti-15Zr-15Mo alloys showed only beta type grain boundary. For the 600°C heat treatment conditions, it is noticed a growth in the α phase. However, for the 900°C and1000°C, there was a phase transition regarding the cooling rate of the heat treatment. The microhardness analysis shown that in general, microhardness increases with the Mo and β phase content of the alloy, where the Ti-15Zr alloy presented a microhardness (HV) between 282-327 HV; the Ti-15Zr-5Mo of 331-390 HV; the Ti-15Zr-10Mo showed values within 389-432 HV and the Ti15Zr-15Mo of 343-433 HV.
118

Fundamental study of immiscible Ti-Mg system : ball milling experiments and ab initio modelling

Phasha, Maje Jacob January 2013 (has links)
Thesis (Ph. D. (Physics)) -- University of Limpopo, 2013. / A combination of ball milling experiments and ab initio calculations in this study successfully yielded results that shed light into understanding the fundamental basis for immiscibility and the concept of mechanical alloying in Ti-Mg system. In addition, the conditions for achieving extended solid solubility in elements that usually do not dissolve in each other under thermodynamic equilibrium conditions have been predicted using ultrasoft (US) and norm-conserving (NC) pseudopotentials. Hydostatic pressures required to stabilize ordered phases were determined. Our new systematic representation of martensitic transformation (MT) paths as a result of dislocation necessary to induce α→FCC, α→BCC and α→ω phase transitions led to, for the first time, a direct determination of CRSS and tensile strength for Ti and Mg HCP metals. Furthermore, a new ω phase which is less stable than α phase at 0 GPa is proposed. Based on this phase, α→ω deformation path which yielded the onset of uniaxial transition pressure of 4.167 GPa is reported. Attempts of synthesizing Ti-Mg solid solutions by means of Simoloyer high energy ball mill were not successful; however, nanocrystalline Mg-TiH2-x composites were instead formed. These results were attributed to quick formation of metastable Ti hydrides or cold welding at early stages of BM prior to alloying, thus serving as possible obstacles to forming such solid solutions. The deformed Ti crystals adsorbed H+ from the stearic acid leading to formation of metastable orthorhombic TiH2-x phase which later transformed to a tetragonal TiH2-x or even cubic TiH2 when stoichiometric amount of H2 had been adsorbed. Although the yield was significantly lower, the product of milling a mixture of coarse Mg and fine Ti particles was comprised of Ti particles adhering around ductile Mg particles in a core shell manner. The adhesion of the fine hard titanium particles on the surface of the large ductile magnesium particles impeded the further plastic deformation of the titanium particles, thus suppressing the formation of the faults necessary for mechanical alloying. Nanocrystalline Ti powder of about 40 nm was produced by 30h ball milling. During BM of Ti powder, solid-state transformation from HCP to FCC occurred in the presence of PCA with lattice parameters of 4.242 and 4.240 Å after 24 and 30 h, respectively, v due to protonation. When Ti powder was milled in the absence of PCA, no phase transformation was observed for both uninterrupted and interrupted milling cycles. In addition, nanocrystalline Mg powder with crystallite size varying between 60 and below 40 nm was produced by ball milling. However, no solid-state transformation took place even if the powder was milled for 90 h. Therefore, we evidently report for the first time that the interstitial H+ is the driving force for α → FCC phase transformation in ball milled Ti powder. Our theoretical results predicted the ω phase to be the ground-state structure of Ti at 0K and P=0 GPa, in support of other previously reported calculations. We noticed that the stability of the α phase was surpassed by that of the FCC lattice at ~ 100 GPa, corresponding with sudden sharp rise in c/a ratio, hence attributed to α → FCC phase transition. Similar results were obtained for Mg at 50 GPa, although in this case the crossing of lattice energies coincided with minimum c/a. However, using our proposed HCP→BCC MT path mechanism for Mg, it is evident that the minimum c/a at 50 GPa corresponds to a change in the preferred deformation slip from basal (below 10 GPa) to prismatic rather than phase transition. Nonetheless, the proposed MT model predicts that both elemental Ti and Mg prefer to deform via prismatic slip as indicated by lower shear stress as well as CRSS values compared to those calculated for basal slip. Theoretical findings from ab initio calculations on hypothetical ordered Ti-Mg phases indicated absence of intermetallic phases at equilibrium conditions, in agreement with experimental data. However, the formation becomes possible at 80 GPa and above with respect to c/a ratio but requires at least 200 GPa with respect to stable lattices. Using calculated heats of formation, elasticity and DOS, it has been possible to show that L12 TiMg3 could not form even at high pressure as 250 GPa. Nonetheless, both approaches indicate that forming an intermetallic compound between Ti and Mg requires a crystal structure change, α→FCC for Ti and HCP→BCC for Mg. Proposed DFT-based solid solution model for predicting phase stability and elastic properties of binary random alloys, with Mg-Li system serving as a test case, successfully yielded reliable results comparable to experimental data. This method was successfully applied to study an immiscible Ti-Mg system and the solubility limit vi was for the first time theoretically established. Based on formation energy of Ti-Mg solid solutions, our calculations predicted for the first time that the solubility of up to 60 and 100 at.% Mg into Ti with the use of USP and NCP, respectively, to be thermodynamically favourable with necessary lattice kinetics being the main challenge. Nonetheless, NCP proved to be reliable in predicting structural and elastic properties of disordered alloys.
119

Comparison of three nickel-titanium instruments and the step-down technique for preparing curved root canals

Wei, Xi. January 2000 (has links)
Thesis (M.D.S.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 119-130) Also available in print.
120

Experimental investigation on phase transformation of superelastic NiTi microtubes /

Li, Zhiqi. January 2002 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 155-160). Also available in electronic version. Access restricted to campus users.

Page generated in 0.0699 seconds