Spelling suggestions: "subject:"titchmarsh bimatrix"" "subject:"titchmarsh 5matrix""
1 |
Das absolutstetige Spektrum eines Matrixoperators und eines diskreten kanonischen Systems / The absolutely continuous spectrum of a matrix operator and a discrete canonical systemFischer, Andreas 19 April 2004 (has links)
In the first part of this thesis the spectrum of a matrix operator is determined. For this the coefficients of the matrix operator are assumed to satisfy rather general properties which combine smoothness and decay. With this the asymptotics of the eigenfunctions can be determined. This in turn leads to properties of the spectra with the aid of the M-matrix. In the second part it will be shown that if a discrete canonical system has absolutely continuous spectrum of a certain multiplicity, then there is a corresponding number of linearly independent solutions y which are bounded in a weak sense.
|
2 |
Spektraltheorie gewöhnlicher linearer Differentialoperatoren vierter Ordnung / Spectral Analysis of Fourth Order Differential OperatorsAbels, Otto 25 July 2001 (has links)
In this thesis the spectral properties of differential operators generated by the formally self-adjoint differential expression Τy = w⁻₁[(ry″)″ - (py′)′ + qy] are investigated. The main tools to be used are the theory of asymptotic integration and the Titchmarsh--Weyl M-matrix. Subject to certain regularity conditions on the coefficients asymptotic integration leads to estimates for the eigenfunctions of the corresponding differential equation Τy = zy. According to the theory of asymptotic integration the regularity conditions combine smoothness with decay, i.e. admissible coefficients are (in an appropriate sense) either short range or slowly varying. Knowledge of the asymptotics (x → ∞) of the solutions will then be used to determine the deficiency index and to derive properties of the M-matrix which is closely related to the spectral measure of an associated self-adjoint realization Τ. Consequently we can compute the multiplicity of the spectrum, locate the absolutely continuous spectrum and give conditions for the singular continuous spectrum to be empty. This generalizes classical results on second order operators.
|
Page generated in 0.0574 seconds