• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zur Transition an einer ebenen Platte und deren Beeinflussung durch elektromagnetische Kräfte

Albrecht, Thomas 21 October 2011 (has links)
Diese numerische Arbeit untersucht, wie sich die laminar-turbulente Transition in der Grenzschicht einer ebenen Platte mit elektromagnetischen Kräften verzögern lässt. Erzeugt von einer Elektroden-Magnet-Anordnung in der Platte wirken jene Kräfte im wandnahen Bereich der Strömung. Sie sind wandparallel sowie stromab gerichtet und besitzen zwei Parameter, die Amplitude und die Eindringtiefe. Zwei- und dreidimensionale Direkte Numerische Simulationen, Grenzschichtgleichungslöser sowie lineare Stabilitätsanalyse werden eingesetzt, um zwei Ansätze der Transitionsverzögerung zu verfolgen: Zum einen die aktive Wellenauslöschung, bei der ankommende Grenzschichtinstabilitäten von gegenphasig angeregten Wellen bis zu 97% ausgelöscht werden. Zum anderen können elektromagnetische Kräfte die Grenzschicht beschleunigen und so zu deutlich stabilieren Grenzschichtprofilen führen. Über evolutionäre Optimierung wurde eine räumliche Verteilung von Eindringtiefe und Kraftamplitude gefunden, die den Energieeinsatz minimiert und gleichzeitig laminare Strömung sicherstellt; dennoch bliebt die energetische Effizienz der Beeinflussung unter Eins. / This numerical work investigates how electromagnetic forces may delay laminar-turbulent transition of a flat plate boundary layer. Generated by an array of electrodes and magnets flush mounted in the wall, those forces act within the wall-near flow. They are oriented in wall-parallel, downstream direction and are characterized by two parameters, namely amplitude and penetration depth. Two- and three-dimensional Direct Numerical Simulations, numerical solutions of boundary layer equations and linear stability analysis are applied to study two possible ways of transition delay: first, the so-called active wave cancellation, where an anti-wave cancels incoming boundary layer instabilities by up to 97%. A second option is have electromagnetic forces accelerate the boundary layer, thereby modifying its mean velocity profile for greatly enhanced stability. Using evolutionary optimization, a spatial distribution of force amplitude and penetration depth was obtained that maintains laminar flow while minimizing electrical power consumption of the actuator. However, the energetic efficiency of actuation remains less than unity.
12

Boundary layer streaks as a novel laminar flow control method

Sattarzadeh Shirvan, Sohrab January 2016 (has links)
A novel laminar flow control based on generation of spanwise mean velocity gradients (SVG) in a flat plate boundary layer is investigated where disturbances of different types are introduced in the wall-bounded shear layer. The experimental investigations are aimed at; (i) generating stable and steady streamwise streaks in the boundary layer which set up spanwise gradients in the mean flow, and (ii) attenuating disturbance energy growth in the streaky boundary layers and hence delaying the onset of turbulence transition. The streamwise streaks generated by four different methods are investigated, which are spanwise arrays of triangular/rectangular miniature vortex generators (MVGs) and roughness elements, non-linear pair of oblique waves, and spanwise-periodic finite discrete suction. For all the investigated methods the boundary layer is modulated into regions of high- and low speed streaks through formation of pairs of counter-rotating streamwise vortices. For the streaky boundary layers generated by the MVGs a parameter study on a wide range of MVG configurations is performed in order to investigate the transient growth of the streaks. A general scaling of the streak amplitudes is found based on empiricism where an integral amplitude definition is proposed for the streaks. The disturbances are introduced as single- and broad band frequency twodimensional Tollmien–Schlichting (TS) waves, and three-dimensional single and a pair of oblique waves. In an attempt to obtain a more realistic configuration compared to previous investigations the disturbances are introduced upstream of the location were streaks are generated. It is shown that the SVG method is efficient in attenuating the growth of disturbance amplitudes in the linear regime for a wide range of frequencies although the disturbances have an initial amplitude response to the generation of the streaks. The attenuation rate of the disturbance amplitude is found to be optimized for an integral streak amplitude of 30% of the free-stream velocity which takes into account the periodic wavelength of the streaky base flow. The stabilizing effect of the streamwise streaks can be extended to the nonlinear regime of disturbances which in turn results in transition to turbulence delay. This results in significant drag reduction when comparing the skin friction coefficient of a laminar- to a turbulent boundary layer. It is also shown that consecutive turbulence transition delay can be obtained by reinforcing the streaky boundary layer in the streamwise direction. For the streaky boundary layer generated by pair of oblique waves their forcing frequency sets the upper limit for the frequency of disturbances beyond which the control fails. / <p>QC 20160208</p>
13

Flow control of boundary lagers and wakes

Fransson, Jens H. M. January 2003 (has links)
Both experimental and theoretical studies have beenconsidered on flat plate boundary layers as well as on wakesbehind porous cylinders. The main thread in this work iscontrol, which is applied passively and actively on boundarylayers in order to inhibit or postpone transition toturbulence; and actively through the cylinder surface in orderto effect the wakecharacteristics. An experimental set-up for the generation of the asymptoticsuction boundary layer (ASBL) has been constructed. This studyis the first, ever, that report a boundary layer flow ofconstant boundary layer thickness over a distance of 2 metres.Experimental measurements in the evolution region, from theBlasius boundary layer (BBL) to the ASBL, as well as in theASBL are in excellent agreement with boundary layer analysis.The stability of the ASBL has experimentally been tested, bothto Tollmien-Schlichting waves as well as to free streamturbulence (FST), for relatively low Reynolds numbers (Re). For the former disturbances good agreement is foundfor the streamwise amplitude profiles and the phase velocitywhen compared with linear spatial stability theory. However,the energy decay factor predicted by theory is slightlyoverestimated compared to the experimental findings. The latterdisturbances are known to engender streamwise elongated regionsof high and low speeds of fluid, denoted streaks, in a BBL.This type of spanwise structures have been shown to appear inthe ASBL as well, with the same spanwise wavelength as in theBBL, despite the fact that the boundary layer thickness issubstantially reduced in the ASBL case. The spanwise wavenumberof the optimal perturbation in the ASBL has been calculated andis β = 0.53, when normalized with the displacementthickness. The spanwise scale of the streaks decreases withincreasing turbulence intensity (Tu) and approaches the scale given by optimalperturbation theory. This has been shown for the BBL case aswell. The initial energy growth of FST induced disturbances hasexperimentally been found to grow linearly as Tu2Rexin the BBL, the transitional Reynolds numberto vary as Tu-2, and the intermittency function to have a relativelywell-defined distribution, valid for all Tu. The wake behind a porous cylinder subject to continuoussuction or blowing has been studied, where amongst other thingsthe Strouhal number (St) has been shown to increase strongly with suction,namely, up to 50% for a suction rate of 2.5% of the free streamvelocity. In contrast, blowing shows a decrease ofStof around 25% for a blowing rate of 5% of the freestream velocity in the considered Reynolds number range. Keywords:Laminar-turbulent transition, asymptoticsuction boundary layer, free stream turbulence,Tollmien-Schlichting wave, stability, flow control, cylinderwake. / QC 20100607
14

Analysis and control of boundary layer transition on a NACA 0008 wing profile

Sinha Roy, Arijit January 2018 (has links)
The main aim of this thesis was to understand the mechanism behind the classical transition scenario inside the boundary layer over an airfoil and eventually attempting to control this transition utilizing passive devices for transition delay. The initial objective of analyzing the transition phenomenon based on TS wave disturbance growth was conducted at 90 Hz using LDV and CTA measurement techniques at two different angles of attack. This was combined with the studies performed on two other frequencies of 100 and 110 Hz, in order to witness its impact on the neutral stability curve behavior. The challenges faced in the next phase of the thesis while trying to control the transition location, was to understand and encompass the effect of adverse pressure gradient before setting up the passive control devices, which in this case was miniature vortex generators. Consequently, several attempts were made to optimize the parameters of the miniature vortex generators depending upon the streak strength and stability. Finally, for 90 Hz a configuration of miniature vortex generators have been found to successfully stabilize the TS wave disturbances below a certain forcing amplitude, which also led to transition delay.
15

Active cancellation of 3D Tollmien-Schlichting waves in the presence of sound and vibrations. / Aktive Auslöschung von 3D Tollmien-Schlichting Wellen unter Anwesenheit von Schall und Schwingungen.

Opfer, Holger 19 September 2002 (has links)
No description available.
16

Stability analysis and transition prediction of wall-bounded flows

Levin, Ori January 2003 (has links)
<p>Disturbances introduced in wall-bounded .ows can grow andlead to transition from laminar to turbulent .ow. In order toreduce losses or enhance mixing in energy systems, afundamental understanding of the .ow stability is important. Inlow disturbance environments, the typical path to transition isan exponential growth of modal waves. On the other hand, inlarge disturbance environments, such as in the presence of highlevels of free-stream turbulence or surface roughness,algebraic growth of non-modal streaks can lead to transition.In the present work, the stability of wall-bounded .ows isinvestigated by means of linear stability equations valid bothfor the exponential and algebraic growth scenario. Anadjoint-based optimization technique is used to optimize thealgebraic growth of streaks. The exponential growth of waves ismaximized in the sense that the envelope of the most ampli.edeigenmode is calculated. Two wall-bounded .ows areinvestigated, the Falkner–Skan boundary layer subject tofavorable, adverse and zero pressure gradients and the Blasiuswall jet. For the Falkner–Skan boundary layer, theoptimization is carried out over the initial streamwiselocation as well as the spanwise wave number and the angularfrequency. Furthermore, a uni.ed transition-prediction methodbased on available experimental data is suggested. The Blasiuswall jet is matched to the measured .ow in an experimentalwall-jet facility. Linear stability analysis with respect tothe growth of two-dimensional waves and streamwise streaks areperformed and compared to the experiments. The nonlinearinteraction of introduced waves and streaks and the .owstructures preceding the .ow breakdown are investigated bymeans of direct numerical simulations.</p><p>Descriptors: Boundary layer, wall jet, algebraic growth,exponential growth, lift-up e.ect, streamwise streaks,Tollmien-Schlichting waves, free-stream turbulence, roughnesselement, transition prediction, Parabolized StabilityEquations, Direct Numerical Simulation.</p>
17

Stability analysis and transition prediction of wall-bounded flows

Levin, Ori January 2003 (has links)
Disturbances introduced in wall-bounded .ows can grow andlead to transition from laminar to turbulent .ow. In order toreduce losses or enhance mixing in energy systems, afundamental understanding of the .ow stability is important. Inlow disturbance environments, the typical path to transition isan exponential growth of modal waves. On the other hand, inlarge disturbance environments, such as in the presence of highlevels of free-stream turbulence or surface roughness,algebraic growth of non-modal streaks can lead to transition.In the present work, the stability of wall-bounded .ows isinvestigated by means of linear stability equations valid bothfor the exponential and algebraic growth scenario. Anadjoint-based optimization technique is used to optimize thealgebraic growth of streaks. The exponential growth of waves ismaximized in the sense that the envelope of the most ampli.edeigenmode is calculated. Two wall-bounded .ows areinvestigated, the Falkner–Skan boundary layer subject tofavorable, adverse and zero pressure gradients and the Blasiuswall jet. For the Falkner–Skan boundary layer, theoptimization is carried out over the initial streamwiselocation as well as the spanwise wave number and the angularfrequency. Furthermore, a uni.ed transition-prediction methodbased on available experimental data is suggested. The Blasiuswall jet is matched to the measured .ow in an experimentalwall-jet facility. Linear stability analysis with respect tothe growth of two-dimensional waves and streamwise streaks areperformed and compared to the experiments. The nonlinearinteraction of introduced waves and streaks and the .owstructures preceding the .ow breakdown are investigated bymeans of direct numerical simulations. Descriptors: Boundary layer, wall jet, algebraic growth,exponential growth, lift-up e.ect, streamwise streaks,Tollmien-Schlichting waves, free-stream turbulence, roughnesselement, transition prediction, Parabolized StabilityEquations, Direct Numerical Simulation. / NR 20140805
18

Development of a time-resolved quantitative surface-temperature measurement technique and its application in short-duration wind tunnel testing

Risius, Steffen 04 July 2018 (has links)
No description available.

Page generated in 0.0804 seconds