• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 25
  • 11
  • Tagged with
  • 114
  • 55
  • 44
  • 36
  • 35
  • 31
  • 27
  • 25
  • 23
  • 22
  • 16
  • 16
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Osteotomies mandibulaires virtuelles : acquisition, planification, modelisation et production d’un guide occlusal et condylien imprime en 3 dimensions. Mise en place d’une chaîne méthodologique de la faisabilité à la clinique / Virtual mandibular osteotomies : acquisition, planning, design and manufacturing of an occlusal and condylar three-diementional (3D) printed splint

Laurentjoye, Mathieu 18 December 2015 (has links)
Le but de ce travail était la mise en place d’une chaîne méthodologique de planification virtuelle d’une ostéotomie sagittale des branches mandibulaires (OSBM) et son transfert au bloc opératoire. Dans la première partie, les méthodes classiques de planification et de transfert sont exposées. Habituellement réalisées à partir de modèles en plâtre sur articulateur, la planification et la production de guides occlusaux chirurgicaux souffrent d’une imprécision potentiellement à l’origine de troubles fonctionnels temporo-­‐mandibulaires. Le contrôle per-­‐opératoire du condyle mandibulaire lors de l’OSBM est un élément de stabilité squelettique dont dépend la qualité du résultat fonctionnel. Une évaluation des pratiques professionnelles des chirurgiens maxillo-­‐faciaux a été réalisée sur ce point. Une méthode de positionnement condylien utilisant un dispositif, moins fréquemment utilisée que la méthode empirique, est proposée comme présentant le meilleur rapport bénéfice/risque. Cette méthode a été reproduite virtuellement à travers les différents maillons de la chaîne méthodologique. Des techniques innovantes informatisées d’acquisition, de conception et modélisation, et d’impression en 3 dimensions ont été utilisées. Dans la seconde partie, la méthodologie de chacun des maillons de la chaîne a été présentée et évaluée, soit sur sujets cadavériques, soit sur patients. L’objectif était de démontrer la faisabilité de la chaîne. Le maillon « acquisition et extraction de surface » a mis en exergue le problème des artéfacts dus aux matériaux métalliques dentaires ou orthodontiques. Dans 90% des cas le maillage obtenu était satisfaisant, permettant de s’affranchir des modèles en plâtre. Le maillon « planification chirurgicale virtuelle » a montré une valorisation par rapport à la technique classique en terme de prévention des interférences des pièces osseuses déplacées. Le maillon « modélisation et impression du guide chirurgical » a décrit les étapes d’invention d’un guide de positionnement occlusal et condylien (OCPD : occlusal and condylar positionning device). Ses caractéristiques techniques, ses modalités de production par impression 3D ainsi que son utilisation peropératoire, ont été précisées. Enfin le maillon « évaluation de l’OCPD » a permis de montrer la faisabilité de la méthode et l’équivalence clinique, technique et biologique de ce dispositif médical sur mesure par rapport à ceux utilisés dans la méthode classique. Enfin le positionnement condylien obtenu grâce à ce dispositif a été évalué de manière préliminaire et comparé aux données de la littérature. Grâce à l’OCPD, nous avons montré la possibilité de transférer au bloc opératoire la planification virtuelle d’une OSBM contrôlant la position des condyles / The purpose of this work was the implementation of a methodological chain for bilateral sagittal split osteotomy (BSSO) virtual planning and its transfer in the operating room. In the first part of the work, usual methods for planning BSSO are exposed. Usually realized from plaster models on articulator, the planning and the occlusal surgical guides production are at risk of temporo-­‐mandibular functional disorders. The quality of the functional result depends on the correct positioning of the mandibular condyle, considered as a skeletal stability element. An assessment of the maxillofacial surgeons practices was realized regarding intra-­‐operative condyle positioning. Using a condylar positioning device (CPD),less frequently employed than the empirical method, meets an acceptable benefit/risk balance. This method was virtually reproduced through various steps of the methodological chain described. Computerized innovative techniques for three-­‐dimensional acquisition, design and manufacturing were used. In the second part of the work, the methodology of each step of the chain was presented and estimated, either on cadaveric subjects, or on patients. The aim was to demonstrate the feasibility of the whole chain. The “acquisition and surface extraction” step pointed the issue of artefacts due to dental or orthodontic metallic devices. Ninety % of the obtained meshes were satisfactory, allowing not to use plaster models. The “virtual surgical planning” step allowed reproducing the usual method and showed great interest in bone interferences prevention. The “modelling and printing of the surgical guide” step described the stages of occlusal and condylar positioning device (OCPD) invention. Its technical characteristics, its methods of manufacturing by 3D printing, and its intraoperative use were specified. The step “OCPD evaluation” showed the method feasibility and the clinical, technical and biological equivalence of this custom-­‐made medical device as compared to those used in the usual method. Finally the condylar position obtained with this device was estimated in a preliminary clinical study and compared with the literature. Thanks to the OCPD, we showed the possibility of transferring in the operating room an OSBM virtual planning controlling condyles position.
112

Évaluation de la correction du mouvement respiratoire sur la détection des lésions en oncologie TEP / Motion correction evaluation on the detectability of lesions in PET oncology

Marache-Francisco, Simon 14 February 2012 (has links)
La tomographie par émission de positons (TEP) est une méthode d’imagerie clinique en forte expansion dans le domaine de l’oncologie. De nombreuses études cliniques montrent que la TEP permet, d’une part de diagnostiquer et caractériser les lésions cancéreuses à des stades plus précoces que l’imagerie anatomique conventionnelle, et d’autre part d’évaluer plus rapidement la réponse au traitement. Le raccourcissement du cycle comprenant le diagnostic, la thérapie, le suivi et la réorientation thérapeutiques contribue à augmenter le pronostic vital du patient et maîtriser les coûts de santé. La durée d’un examen TEP ne permet pas de réaliser une acquisition sous apnée. La qualité des images TEP est par conséquent affectée par les mouvements respiratoires du patient qui induisent un flou dans les images. Les effets du mouvement respiratoire sont particulièrement marqués au niveau du thorax et de l’abdomen. Plusieurs types de méthode ont été proposés pour corriger les données de ce phénomène, mais elles demeurent lourdes à mettre en place en routine clinique. Des travaux récemment publiés proposent une évaluation de ces méthodes basée sur des critères de qualité tels que le rapport signal sur bruit ou le biais. Aucune étude à ce jour n’a évalué l’impact de ces corrections sur la qualité du diagnostic clinique. Nous nous sommes focalisés sur la problématique de la détection des lésions du thorax et de l'abdomen de petit diamètre et faible contraste, qui sont les plus susceptibles de bénéficier de la correction du mouvement respiratoire en routine clinique. Nos travaux ont consisté dans un premier temps à construire une base d’images TEP qui modélisent un mouvement respiratoire non-uniforme, une variabilité inter-individuelle et contiennent un échantillonnage de lésions de taille et de contraste variable. Ce cahier des charges nous a orientés vers les méthodes de simulation Monte Carlo qui permettent de contrôler l’ensemble des paramètres influençant la formation et la qualité de l’image. Une base de 15 modèles de patient a été créée en adaptant le modèle anthropomorphique XCAT sur des images tomodensitométriques (TDM) de patients. Nous avons en parallèle développé une stratégie originale d’évaluation des performances de détection. Cette méthode comprend un système de détection des lésions automatisé basé sur l'utilisation de machines à vecteurs de support. Les performances sont mesurées par l’analyse des courbes free-receiver operating characteristics (FROC) que nous avons adaptée aux spécificités de l’imagerie TEP. L’évaluation des performances est réalisée sur deux techniques de correction du mouvement respiratoire, en les comparant avec les performances obtenues sur des images non corrigées ainsi que sur des images sans mouvement respiratoire. Les résultats obtenus sont prometteurs et montrent une réelle amélioration de la détection des lésions après correction, qui approche les performances obtenues sur les images statiques. / Positron emission tomography (PET) is nuclear medicine imaging technique that produces a three-dimensional image of functional processes in the body. The system detects pairs of gamma rays emitted by a tracer, which is introduced into the body. Three-dimensional images of tracer concentration within the body are then constructed by computer analysis. Respiratory motion in emission tomography leads to image blurring especially in the lower thorax and the upper abdomen, influencing this way the quantitative accuracy of PET measurements as well a leading to a loss of sensitivity in lesion detection. Although PET exams are getting shorter thanks to the improvement of scanner sensitivity, the current 2-3 minutes acquisitions per bed position are not yet compatible with patient breath-holding. Performing accurate respiratory motion correction without impairing the standard clinical protocol, ie without increasing the acquisition time, thus remains challenging. Different types of respiratory motion correction approaches have been proposed, mostly based on the use of non-rigid deformation fields either applied to the gated PET images or integrated during an iterative reconstruction algorithm. Evaluation of theses methods has been mainly focusing on the quantification and localization accuracy of small lesions, but their impact on the clinician detection performance during the diagnostic task has not been fully investigated yet. The purpose of this study is to address this question based on a computer assisted detection study. We evaluate the influence of two motion correction methods on the detection of small lesions in human oncology FDG PET images. This study is based on a series of realistic simulated whole-body FDG images based on the XCAT model. Detection performance is evaluated with a computer-aided detection system that we are developing for whole-body PET/CT images. Detection performances achieved with these two correction methods are compared with those achieved without correction, ie. with respiration average PET images as well as with reference images that do not model respiration effects. The use of simulated data makes possible the creation of theses perfectly corrected images and the definition of known lesions locations that serve as a reference.
113

Morphologic evaluation of ruptured abdominal aortic aneurysm by 3D modeling

Tang, An 08 1900 (has links)
No description available.
114

Bioresorbable coronary stents : non-invasive quantitative assessment of edge and intrastent plaque – a 256-slice computed tomography longitudinal study

Zdanovich, Evguenia 10 1900 (has links)
Les bioresorbable stents (BRS), en français intitulés tuteurs coronariens biorésorbables, sont constitués d’un polymère biorésorbable, plutôt que de métal, et ne créent pas d’artéfacts métalliques significatifs en tomodensitométrie (TDM). Cela permet une meilleure évaluation de la plaque coronarienne sous ces tuteurs en TDM qu’avec les anciens tuteurs qui sont en métal. OBJECTIF: Évaluer l’évolution de la composition de la plaque, sa fraction lipidique (FL)— marqueur de vulnérabilité de la plaque, dans les 3 zones pré-tuteur (bord proximal), intra-tuteur et post-tuteur (bord distal), et le volume de la plaque entre 1 et 12 mois post-implantation de BRS. MÉTHODOLOGIE: Il s’agit d’une étude observationnelle longitudinale réalisée chez 27 patients consécutifs (âge moyen 59,7 +/- 8,6 ans) et recrutés prospectivement pour une imagerie par TDM 256-coupes à 1 et 12 mois post-implantation de BRS (35 tuteurs total). Les objectifs primaires sont: volume de plaque totale et de FL (mm3) comparés entre 1 et 12 mois. Afin de tenir compte de la corrélation intra-patient, des analyses de variance des modèles linéaires mixtes avec ou sans spline sont utilisés avec deux facteurs répétés temps et zone/bloc (1 bloc= 5 mm en axe longitudinal). La valeur % FL= volume absolu du FL/ volume total de la plaque. RÉSULTATS: Notre analyse par bloc ou par spline n’a pas démontré une différence significative dans les volumes de plaque ou des FL dans les zones pre- intra- and post-tuteur entre 1 et 12 mois. CONCLUSION: Notre étude a réussi à démontrer la faisabilité d’une analyse non-invasive quantitative répétée de la plaque coronarienne et de la lumière intra-tuteur avec l’utilisation de TDM 256 coupes. Cette étude pilote n’a pas démontré de différence significative dans les volumes des plaques et atténuation entre 1- et 12- mois de follow-up post-implantation de BRS. Notre méthode pourrait être appliquée à l’évaluation des différents structures ou profils pharmacologiques de ces tuteurs. / Coronary bioresorbable stents (BRS) are made of a bioresorbable polymer rather than metal. Unlike metallic stents, BRS do not produce significant artifacts in computed tomography (CT) and are radiolucent in CT, making it possible to evaluate coronary plaque beneath an implanted stent. PURPOSE: The purpose of our study was to evaluate the volumes of plaque and low attenuation plaque components (LAP —a marker of plaque vulnerability) of pre-, intra- and post-stent plaque location between 1 and 12 months post-implantation. METHODS: In our prospective longitudinal study, we recruited 27 consecutive patients (mean age 59.7 +/- 8.6 years) with bioresorbable stents (n=35) for a 256-slice ECG-synchronized CT evaluation at 1 month and at 12 months post stent implantation. Total plaque volume (mm3) as well as absolute and relative (%) LAP volume per block in the pre-, intra- and post-stent zones were analyzed; comparison of 1 and 12 months post BRS implantation. Changes in these variables were assessed using mixed effects models with and without spline, which also accounted for correlation between repeated measurements with factors such as time and zone/block (1 block = 5 mm in longitudinal axis). The value % LAP= LAP absolute volume/ total plaque volume. RESULTS: Our block or spline model analysis showed no significant difference in plaque or LAP volumes in pre-, intra- and post-stent zones measured at 1 month and at 12 months. CONCLUSION: Our study demonstrates the feasibility of repeated non-invasive quantitative analysis of intrastent coronary plaque and in-stent lumen using a 256-channel CT scan. This pilot study did not show significant differences in plaque volume and attenuation between 1- and 12-month follow-up from stent implantation. The method we used could be applied to the evaluation of different stent structures or different pharmacological profiles of bioresorbable stents.

Page generated in 0.0772 seconds