Spelling suggestions: "subject:"homography."" "subject:"lomography.""
531 |
Using Advanced Imaging to Study FishBrowning, Zoe Swezy 16 December 2013 (has links)
Although mammals are the most commonly utilized laboratory animal, laboratory animal medicine continually seeks to replace them with animals of lower phylogenic classification. Fish are becoming increasingly important as investigators seek alternative animal models for research. Fish can provide an economical and feasible alternative to typical mammalian models; moreover, many fish, which have comparatively short life spans, can easily reproduce in the laboratory. One key area of animal health research in which fish have been underutilized is the field of advanced imaging. Although many images of fish have been captured through the use of computed tomography (CT), radiography, and ultrasonography, these images have been primarily utilized for anatomical study. In addition, fish have never before been studied with positron emission tomography/ computed tomography (PET/CT). My objectives were to determine if these imaging techniques can be used to obtain physiological information from fish, therefore making it more likely that fish can be utilized as replacement animals using these new imaging techniques (CT, PET/CT). I performed two different types of studies to assess the potential application of advanced imaging techniques to fish. In the first experiment, microCT was used to characterize otolith deformity in vitamin C deficient captive-raised red drum and relate the deformity to behavioral and physiological changes. I found that the normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses. In the second experiment, fluorodeoxyglucose-positron emission tomography/ computed tomography (FDG-PET/CT) was used to quantify glucose uptake in select organs prior to carcinogenesis studies in fish. The quantified glucose uptake was compared to published data on humans, mice, and dogs. Rapid, quantifiable glucose uptake was demonstrated, particularly in brain, kidneys, and liver in all imaged fish species. Glucose uptake in the major organ systems of fish was closer to that in humans than uptake in mice or dogs, indicating that fish may serve as an effective alternative animal model for tumor studies using this technology. Other applications for this technique in fish may include metabolism studies and screening for environmental carcinogenesis. I found that both microCT and PET/CT imaging provided useful and meaningful results. In addition, the use of non-invasive scanning allows for re-use of fish, thus reducing the number of animal models used in experiments. These experiments suggest that fish will be good replacement models for mammals using these advanced imaging techniques.
|
532 |
Performance of a cadmium tungstate MVCT scannerKirvan, Paul Francis Unknown Date
No description available.
|
533 |
Fluence Field Modulated Computed TomographyBartolac, Steven J. 07 January 2014 (has links)
Dose management in CT is an increasingly important issue as the number of CT scans per capita continues to rise. One proposed approach for enhanced dose management is to allow the spatial pattern of x-ray fluence delivered to the patient to change dynamically as the x-ray tube rotates about the patient. The changes in incident fluence could be guided using a patient model and optimization method in order to deliver user-defined image quality criteria while minimizing dose. This approach is referred to as fluence field modulated CT (FFMCT). In this work, a framework and optimization method was developed for evaluating the dose and image quality benefits of FFMCT, both in simulated and experimental data. Modulated fluence profiles were optimized for different objects and image quality criteria using a simulated annealing algorithm. Analysis involved comparing predicted image quality maps and dose outcomes to those using conventional methods. Results indicated that image quality distributions using FFMCT agreed better with prescribed image qualities than conventional techniques allow. Dose reductions ranged depending on the task and object of interest. Simulation studies using a simulated anthropomorphic phantom of the chest suggest an average dose reduction of at least 20% compared to conventional techniques is possible, where local dose reductions may be greater than 60%. Across different imaging tasks and objects, integral dose reductions ranged from 20-50% when compared to a conventional bowtie filter. The results of this study suggest that given a suitable collimator approach, FFMCT could reap significant benefits in terms of reducing dose and optimizing image quality. Though the tradeoff between image quality and imaging dose may not be eliminated, it may be better managed using an FFMCT approach.
|
534 |
The development and application of a real-time electrical resistance tomography system.Adigun, Peter Ayotola. January 2012 (has links)
This dissertation focuses on the application of tomography in the sugar milling process, specifically
within the vacuum pan. The research aims to improve the efficiency and throughput of a sugar mill by
producing real-time images of the boiling dynamic in the pan and hence can be used as a diagnostic
tool. The real-time tomography system is a combination of ruggedized data collecting hardware, a
switching circuit and software algorithms. The system described in this dissertation uses 16 electrodes
and estimates images based on the distinct differences in conductivities to be found in the vacuum
pan, i.e. a conductive syrup-like fluid (massecuite) and bubbles.
There is a direct correlation between the bubbles produced during the boiling process and heat transfer
in the pan. From this correlation one can determine how well the pan is operating. The system has
been developed in order to monitor specific parts of a pan for optimal boiling. A binary reconstructed
image identifies either massecuite or water vapour.
Each image is reconstructed using a modified neighbourhood data collection method and a back
projection algorithm. The data collection and image reconstruction take place simultaneously, making
it possible to generate images in real-time. Each image frame is reconstructed at approximately 1.1
frames per second. Most of the system was developed in LabVIEW, with some added external drive
electronics, and functions seamlessly. The tomography system is LAN enabled hence measurements
are initiated through a remote PC on the same network and the reconstructed images are streamed to
the user.
The laboratory results demonstrate that it is possible to generate tomographic images from bubbles vs
massecuite, tap water and deionized water in real-time. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
|
535 |
INTEGRATED GEOPHYSICAL INVESTIGATION OF KARST FEATURES – INNER BLUEGRASS REGION OF KENTUCKYFrommel, Jamin C. 01 January 2012 (has links)
High-resolution electrical-resistivity, seismic-refraction, and seismic-reflection surveys were performed at three locations in the Inner Bluegrass Region of Kentucky along coincident survey lines in order to correlate results and determine which method is most effective at locating karst features in this area. The first two survey locations at Slack’s Cave and the Kentucky Horse Park were chosen in order to investigate known karst features. High and low electrical-resistivity anomalies were correlated to air- and water-filled karst voids, respectively. Seismic velocity anomalies, including parabolic time suppressions, amplitude terminations, and surface-wave backscatters, were also observed and correlated to these karst voids. These findings were applied to a third location along Berea Road in order to investigate undiscovered karst voids. Three seismic targets were selected based on backscatter anomaly locations and were aligned in a northwest trend following the general bedrock dip, joint orientations, and suspected conduit orientation. Overall, the seismic-reflection method provided the highest resolution and least ambiguous results; however, integration of multiple methods was determined to help decrease ambiguities in interpretation created by the inherent non-uniqueness found in the results of each method.
|
536 |
Positron Emission Tomography for the dose monitoring of intra-fractionally moving Targets in ion beam therapyStützer, Kristin 26 June 2014 (has links) (PDF)
Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumour conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumour volume to reach higher tumour control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumour entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumour sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany.
High standards for quality assurance are required in IBT to ensure a safe and precise dose application. Both underdosage in the tumour and overdosage in the normal tissue might endanger the treatment success. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. It makes use of the tissue autoactivation by nuclear fragmentation reactions occurring along the beam path. Among others, +-emitting nuclides are generated and decay according to their half-life under the emission of a positron. The subsequent positron-electron annihilation creates two 511 keV photons which are emitted in opposite direction and can be detected as coincidence event by a dedicated PET scanner. The induced three-dimensional (3D) +- activity distribution in the patient can be reconstructed from the measured coincidences. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two +-activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. This workflow has been proven to be valuable for the dose monitoring in IBT when it was applied for about 440 patients, mainly suffering from deep-seated head and neck tumours that have been treated with 12C ions at GSI.
In the presence of intra-fractional target motion, the conventional 3D PET data processing will result in an inaccurate representation of the +-activity distribution in the patient. Fourdimensional, time-resolved (4D) reconstruction algorithms adapted to the special geometry of in-beam PET scanners allow to compensate for the motion related blurring artefacts. Within this thesis, a 4D maximum likelihood expectation maximization (MLEM) reconstruction algorithm has been implemented for the double-head scanner Bastei installed at GSI. The proper functionality of the algorithm and its superior performance in terms of suppressing motion related blurring artefacts compared to an already applied co-registration approach has been demonstrated by a comparative simulation study and by dedicated measurements with moving radioactive sources and irradiated targets. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the successful reduction of motion artefacts from a measurement with rotating (two-dimensional moving) radioactive sources. For 1D cos2 and cos4 motion, it has been clearly illustrated by systematic point source measurements that the motion influence can be better compensated with the same number of motion phases if amplitudesorted instead of time-sorted phases are utilized. In any case, with an appropriate parameter selection to obtain a mean residual motion per phase of about half of the size of a PET crystal size, acceptable results have been achieved. Additionally, it has been validated that the 4D MLEM algorithm allows to reliably access the relevant parameters (particle range and lateral field position and gradients) for a dose verification in intra-fractionally moving targets even from the intrinsically low counting statistics of IBT-PET data.
To evaluate the measured +-activity distribution, it should be compared to a simulated one that is expected from the moving target irradiation. Thus, a 4D version of the simulation software is required. It has to emulate the generation of +-emitters under consideration of the intra-fractional motion, their decay at motion state dependent coordinates and to create listmode data streams from the simulated coincidences. Such a revised and extended version that has been compiled for the special geometry of the Bastei PET scanner is presented within this thesis. The therapy control system provides information about the exact progress of the motion compensated dose delivery. This information and the intra-fractional target motion needs to be taken into account for simulating realistic +-activity distributions. A dedicated preclinical phantom simulation study has been performed to demonstrate the correct functionality of the 4D simulation program and the necessity of the additional, motionrelated input parameters.
Different to the data evaluation for static targets, additional effort is required to avoid a potential misleading interpretation of the 4D measured and simulated +-activity distributions in the presence of deficient motion mitigation or data processing. It is presented that in the presence of treatment errors the results from the simulation might be in accordance to the measurement although the planned and delivered dose distribution are different. In contrast to that, deviations may occur between both distributions which are not related to anatomical changes but to deficient 4D data processing. Recommendations are given in this thesis to optimize the 4D IBT-PET workflow and to prevent the observer from a mis-interpretation of the dose monitoring data. In summary, the thesis contributes on a large scale to a potential future application of the IBT-PET monitoring for intra-fractionally moving target volumes by providing the required reconstruction and simulation algorithms. Systematic examinations with more realistic, multi-directional and irregular motion patterns are required for further improvements. For a final rating of the expectable benefit from a 4D IBT-PET dose monitoring, future investigations should include real treatment plans, breathing curves and 4D patient CT images.
|
537 |
Spatially-filtered continuous-wave acoustic tomography for breast cancer detectionMcCaugherty, Kevin 15 January 2013 (has links)
The main objective of this master’s thesis is to investigate the possibility of applying spatially-filtered continuous-wave acoustic tomography to the detection of breast cancer. A continuous acoustic wave is transmitted through the specimen in this tomographic imaging method. Any scattered waves that do not positively contribute to the projection are filtered out using an aperture. There is evidence to suggest that cancerous lesions in the breast have a higher speed of sound than surrounding tissues. This imaging method produces two tomograms of the specimen simultaneously: one showing the internal speed of sound, and the other showing the internal acoustic attenuation coefficient. There is the possibility for a third imaging modality, acoustic dispersion tomography, to be applied to this imaging method.
Two proof-of-concept prototype spatially-filtered continuous-wave acoustic tomography scanners were designed and built: one that uses a collimated beam to interrogate the specimen, and another that uses a confocal beam. A least-squares tomographic reconstruction algorithm was chosen to reconstruct the tomograms this method creates. A prostate phantom and a breast phantom were imaged with the confocal tomographic scanner. The tomograms of the prostate phantom show two 1 cm lesions which are consistent with information from the phantom manufacturer. Further work is required to properly validate the speed of sound and acoustic attenuation measurements this method produces. / Graduate
|
538 |
ガンマ線transmission computed tomographyを併用した肺血流分布測定TORIZUKA, Kanji, FUJITA, Toru, MINATO, Kotaro, TODO, Giro, MUKAI, Takao, ISHII, Yasushi, ITOH, Harumi, MAEDA, Hisatoshi, 鳥塚, 莞爾, 藤田, 透, 湊, 小太郎, 藤堂, 義郎, 向井, 孝夫, 石井, 靖, 伊藤, 春海, 前田, 尚利 11 1900 (has links)
No description available.
|
539 |
Fluence Field Modulated Computed TomographyBartolac, Steven J. 07 January 2014 (has links)
Dose management in CT is an increasingly important issue as the number of CT scans per capita continues to rise. One proposed approach for enhanced dose management is to allow the spatial pattern of x-ray fluence delivered to the patient to change dynamically as the x-ray tube rotates about the patient. The changes in incident fluence could be guided using a patient model and optimization method in order to deliver user-defined image quality criteria while minimizing dose. This approach is referred to as fluence field modulated CT (FFMCT). In this work, a framework and optimization method was developed for evaluating the dose and image quality benefits of FFMCT, both in simulated and experimental data. Modulated fluence profiles were optimized for different objects and image quality criteria using a simulated annealing algorithm. Analysis involved comparing predicted image quality maps and dose outcomes to those using conventional methods. Results indicated that image quality distributions using FFMCT agreed better with prescribed image qualities than conventional techniques allow. Dose reductions ranged depending on the task and object of interest. Simulation studies using a simulated anthropomorphic phantom of the chest suggest an average dose reduction of at least 20% compared to conventional techniques is possible, where local dose reductions may be greater than 60%. Across different imaging tasks and objects, integral dose reductions ranged from 20-50% when compared to a conventional bowtie filter. The results of this study suggest that given a suitable collimator approach, FFMCT could reap significant benefits in terms of reducing dose and optimizing image quality. Though the tradeoff between image quality and imaging dose may not be eliminated, it may be better managed using an FFMCT approach.
|
540 |
CHARACTERISATION OF SAMPLES OF ORE PARTICLES USING X-RAY MICRO-TOMOGRAPHYMurat Cakici Unknown Date (has links)
The degree of mineral liberation is important for the efficiency of subsequent physical separation processes such as froth flotation. Mineral liberation studies involve determining the volumetric abundance or volumetric grade distribution of a specific mineralogical phase in a particular mineral. Currently, methodologies for assessing mineral liberation are laborious regarding sample preparation, analysis time (from weeks to months), and the need for stereological correction. These constraints can be eliminated by using X-ray CT which gives the cross-sections directly from three-dimensional data in shorter time (from ten minutes to hours) with minimal sample preparation. X-ray computed tomography (CT) is a non-destructive technique which allows three-dimensional visualisation of inner structures of an object based on the variations in density and atomic composition. Initially, it was developed as a medical tool for imaging soft tissue and bone. During the last decade, the number of X-ray CT applications in engineering and geology has steadily increased, with the improvements in performance and imaging capabilities. The aim of the present work is to apply X-ray CT technique for finely divided ore samples and to study the relationship between mineral liberation and CT results. Four different ore types were used in this study: Northparkes ore (Australia), Ernest Henry ore (Australia), Keetac ore (USA) and Cannington ore (Australia). Different settings of the desktop X-ray CT technique were applied for each particular ore sample for several ore liberation (particle size distribution) properties. Two dimensional CT images were reconstructed from the three-dimensional X-ray CT data. It was found that the settings for CT technique were a function of the ore type. Particularly in the case of Cannington (high density ore) the best setting conditions split from the rest of the ores tested. The appearance of different artifacts occurring during the analysis were studied and kept to the minimum. A functionality between mineral liberation and CT results was found. The variables affecting the most the results were the Voltage and Minimum Intensity Percentage. Contrary to the expected trends, variables having a negligible effect on the results were found to be exposure time / equivalent Al filter thickness.
|
Page generated in 0.0563 seconds