Spelling suggestions: "subject:"bitopological dataanalysis"" "subject:"bitopological data.analysis""
1 |
Topological regularization and relative latent representations / Topologisk regularisering och relativa latenta representationerGarcía Castellanos, Alejandro January 2023 (has links)
This Master's Thesis delves into the application of topological regularization techniques and relative latent representations within the realm of zero-shot model stitching. Building upon the prior work of Moschella et al. (2022) that introduces relative latent representations to enhance the similarities between latent spaces of different models, we incorporate the approach of Hofer et al. (2021), which combines Topological Data Analysis (TDA) and Machine Learning techniques for topological densification of class distributions in the latent space. The main research objective is to investigate the impact of topological regularization on zero-shot stitching performance when employing relative latent representations. Theoretical foundations for the relative transformation are established based on the intertwiner groups of activation functions. Empirical analyses are conducted to validate the assumptions underlying the construction of the relative transformation in the latent space. Moreover, experiments are performed on a Large Language Model trained on multilingual Amazon Reviews datasets to evaluate the effectiveness of zero-shot stitching while using the topological densification technique and the relative transformation. The findings indicate that the proposed methodologies can enhance the performance of multilingual model stitching. Specifically, enforcing the relative transformation to preserve the H0 homology death times distributions proves beneficial. Additionally, the presence of similar topological features plays a crucial role in achieving higher model compatibility. However, a more in-depth exploration of the geometric properties of the post-relative transformation latent space is necessary to further improve the topological densification technique. Overall, this work contributes to the emerging field of Topological Machine Learning and provides valuable insights for researchers in transfer learning and representation learning domains. / Denna masteruppsats undersöker tillämpningen av topologiska regleringstekniker och relativa latenta representationer inom området för zero-shot model stitching. Genom att bygga vidare på tidigare arbete av Moschella et al. (2022), som introducerade relativa latenta representationer för att förbättra likheterna mellan latenta rummet hos olika modeller, inkorporerar vi tillvägagångssättet av Hofer et al. (2021), som kombinerar topologisk dataanalys (TDA) och maskininlärningstekniker för topologisk ``förtätning'' av klassfördelningar i det latenta utrymmet. Den huvudsakliga forskningsuppgiften är att undersöka effekten av topologisk reglering på zero-shot model stitching-prestanda när man använder relativa latenta representationer. Teoretiska grunder för den relativa transformationen etableras baserat på intertwinergrupperna för aktiveringsfunktioner. Empiriska analyser genomförs för att validera antagandena som ligger till grund för konstruktionen av den relativa transformationen i det latenta rummen. Dessutom utförs experiment på en stor språkmodell tränad på multilinguella Amazon Reviews-dataset för att utvärdera effektiviteten hos zero-shot model stitching med Hofer's topologiska reglering och relativa transformation. Resultaten visar att de föreslagna metoderna kan förbättra prestationen hos zero-shot model stitching för flerspråkiga modeller. Specifikt är det fördelaktigt att tvinga den relativa transformationen att bevara H0 homologins dödstidsfördelningar. Dessutom spelar närvaron av liknande topologiska egenskaper en avgörande roll för att uppnå högre modellkompatibilitet. Dock krävs en mer ingående utforskning av de geometriska egenskaperna hos det latenta utrymmet efter den relativa transformationen för att ytterligare förbättra Hofer's topologiska reglering. Sammanfattningsvis bidrar detta arbete till det framväxande området Topologisk Maskininlärning och ger värdefulla insikter för forskare inom ``transfer-inlärning'' och representationsinlärningsdomäner.
|
Page generated in 0.0788 seconds