• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exotic phases of correlated electrons in two dimensions

Lu, Yuan-Ming January 2011 (has links)
Thesis advisor: Ziqiang Wang / Exotic phases and associated phase transitions in low dimensions have been a fascinating frontier and a driving force in modern condensed matter physics since the 80s. Due to strong correlation effect, they are beyond the description of mean-field theory based on a single-particle picture and Landau's symmetry-breaking theory of phase transitions. These new phases of matter require new physical quantities to characterize them and new languages to describe them. This thesis is devoted to the study on exotic phases of correlated electrons in two spatial dimensions. We present the following efforts in understanding two-dimensional exotic phases: (1) Using Zn vertex algebra, we give a complete classification and characterization of different one-component fractional quantum Hall (FQH) states, including their ground state properties and quasiparticles. (2) In terms of a non-unitary transformation, we obtain the exact form of statistical interactions between composite fermions in the lowest Landau level (LLL) with v=1/(2m), m=1,2... By studying the pairing instability of composite fermions we theoretically explains recently observed FQHE in LLL with v=1/2,1/4. (3) We classify different Z2 spin liquids (SLs) on kagome lattice in Schwinger-fermion representation using projective symmetry group (PSG). We propose one most promising candidate for the numerically discovered SL state in nearest-neighbor Heisenberg model on kagome lattice}. (4) By analyzing different Z2 spin liquids on honeycomb lattice within PSG classification, we find out the nature of the gapped SL phase in honeycomb lattice Hubbard model, labeled sublattice pairing state (SPS) in Schwinger-fermion representation. We also identify the neighboring magnetic phase of SPS as a chiral-antiferromagnetic (CAF) phase and analyze the continuous phase transition between SPS and CAF phase. For the first time we identify a SL called 0-flux state in Schwinger-boson representation with one (SPS) in Schwinger-fermion representation by a duality transformation. (5) We show that when certain non-collinear magnetic order coexists in a singlet nodal superconductor, there will be Majorana bound states in vortex cores/on the edges of the superconductor. This proposal opens a window for discovering Majorana fermions in strongly correlated electrons. (6) Motivated by recent numerical discovery of fractionalized phases in topological flat bands, we construct wavefunctions for spin-polarized fractional Chern insulators (FCI) and time reversal symmetric fractional topological insulators (FTI) by parton approach. We show that lattice symmetries give rise to different FCI/FTI states even with the same filling fraction. For the first time we construct FTI wavefunctions in the absence of spin conservation which preserve all lattice symmetries. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations. / Thesis (PhD) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
2

Teorias de gauge e modelos topológicos (anyons e ordem topológica) / Gauge theories and topological models (anyons and topological order)

Ferreira, Miguel Jorge Bernabé 12 August 2016 (has links)
Uma das propriedades mais marcantes de partículas que obedecem a dinâmica quântica é o fato de partículas do mesmo tipo (como dois elétrons, por exemplo) serem indistinguíveis. Em três dimensões, essas partículas podem ser separadas em dois grupo distintos - férmions ou bósons - não havendo uma terceira opção. A razão para isso é topológica, ou seja, depende exclusivamente da topologia do espaço. Em duas dimensões, entretanto, existem partículas que obedecem a regras estatísticas fracionárias, ou estatísticas ainda mais bizarras ditas não-abelianas, em que uma simples troca de dois anyons idênticos representa uma transformação unitária na função de onda do sistema ao invés de uma simples fase. Partículas que obedecem essas regras estatística não-usuais recebem o nome de anyons. Da mesma forma como a topologia do espaço em três dimensões dita as possíveis regras estatísticas que as partículas podem obedecer, a estatística aniônica está fortemente relacionando à topologia do espaço e, portanto, sistemas aniônicas são muitas vezes usados para descrever fases topológicas presentes em alguns sistemas bidimensionais. Neste trabalho apresentaremos alguns aspectos gerais de sistemas aniônicos - livres de modelo - e analisaremos alguns modelos de muitos corpos na rede que permitem descrever anyons como excitação de quasi-partícula. A principal classe de modelo que iremos analisar é a classe do modelo duplo quântico (MDQ) - que é um modelo quântico em (2+1)D cujos graus de liberdade são elementos de um grupo G (finito) vivendo nas arestas de uma rede e cuja dinâmica é descrita por uma hamiltoniana de muitos corpos. O MDQ é um modelo já bem estudado e conhecido na literatura; neste trabalho, porém, será apresentada uma formulação alternativa para o mesmo, a qual desempenha dois papeis importantes nesta tese. O primeiro deles é de mostrar que o MDQ pode ser obtido a partir da deformação de um invariante topológico; o que, por sua vez, ajuda a reconhecer a ordem topológica presente no modelo. O segundo papel importante é mostrar que essa formulação leva também a uma hamiltoniana de muitos corpos que representa uma generalização da hamiltoniana do MDQ. Alguns desses novos modelos permitem descrever sistemas aniônicos que não podem ser descritos pelo modelo duplo quântico usual. Em outras palavras, o modelo generalizado que será apresentado neste trabalho permite descrever diferentes fases topológicas partindo da deformação de um mesmo invariante topológico. / One of the most interesting properties of quantum particles is the indistinguishability of particles of the same kind (as for example two electrons). On three dimensions these particles are known to be either fermions or bosons depending on their statistical behaviour. The reason for that is topology, in other words these two possible statistics are due to the space topology. However, on two dimensions there are particles called anyons which are neither fermion nor boson; they may obey a fractional statistic or a even more weird non-abelian statistic - where a single exchange of two identical anyons a unitary transformation on the wave function instead of just acquiring a phase factor. As well as the usual fermionic and bosonic statistic, the anyonic statistic depends strongly on the space topology and thus anyonic systems are often used to describe topological phases of matter of two dimensional systems. In this work we are going to show some general (model free) aspects of anyonic systems and also analyse some many body systems that describe anyons as quasi-particle excitations. We will mostly study a class of model called quantum double models (QDMs). Quantum double models are (2+1)D models where the degrees of freedom are elements of a group G living on the edges of lattice and the dynamic is given by a many body hamiltonian. The QDM is a well known and studied model on the literature, however in this work we are going to show an alternative construction for QDMs which will play two very important roles in this thesis. First, it will allows us to obtain the QDMs from deforming a topological invariant, and that helps to easily identify the topological order on this model. Besides, one can also obtain a many body hamiltonian that represents a generalization of the the QDM hamiltonian. Some of these new models describe anyonic systems other than the ones that can be described by usual QDM. In other words, this new construction leads to a many body hamiltonian that can describe both quantum double models and generalizations of it as particular cases.
3

Ordem topológica com simetrias Zn e campos de matéria / Topological order with Zn symmetries and matter fields

Resende, Maria Fernanda Araujo de 03 April 2017 (has links)
Neste trabalho, construímos duas generalizações de uma classe de modelos discretos bidimensionais, assim chamados \"Quantum Double Models\", definidos em variedades orientáveis, compactas e sem fronteiras. Na primeira generalização, introduzimos campos de matéria aos vértices e, na segunda, às faces. Além das propriedades básicas dos modelos, estudamos como se comporta a sua ordem topológica sob a hipótese de que os estados de base são indexados por grupos Abelianos. Na primeira generalização, surge um novo fenômeno de confinamento. Como consequência, a degenerescência do estado fundamental se torna independente do grupo fundamental sobre o qual o modelo está definido, dependendo da ação do grupo de calibre e do segundo grupo de homologia. A segunda generalização pode ser vista como o dual algébrico da primeira. Nela, as mesmas propriedades de confinamento de quasipartículas está presente, mas a degenerescência do estado fundamental continua dependendo do grupo fundamental. Além disso, degenerescências adicionais aparecem, relacionadas ao homomorfismo de coação entre os grupos de matéria e de calibre. / In this work, we constructed two generalizations of a class of discrete bidimensional models, the so called Quantum Double Models, defined in orientable, compact and boundaryless manifolds. In the first generalization we introduced matter fields to the vertices and, in the second one, to the faces. Beside the basic model properties, we studied its topological order behaviour under the hypothesis that the basic states be indexed by Abelian groups. In the first generalization, appears a new phenomenon of quasiparticle confinement. As a consequence, the ground state degeneracy becomes independent of the fundamental group of the manifold on which the model is defined, depending on the action of the gauge group and on the second group of homology. The second generalization can be seen as the algebraic dual of the first one. In it, the same quasiparticle confinement properties are present, but the ground state degeneracy stay dependent on the fundamental group. Besides, additional degeneracies appear, related to a coaction homomorphism between matter and gauge groups.
4

Teorias de gauge e modelos topológicos (anyons e ordem topológica) / Gauge theories and topological models (anyons and topological order)

Miguel Jorge Bernabé Ferreira 12 August 2016 (has links)
Uma das propriedades mais marcantes de partículas que obedecem a dinâmica quântica é o fato de partículas do mesmo tipo (como dois elétrons, por exemplo) serem indistinguíveis. Em três dimensões, essas partículas podem ser separadas em dois grupo distintos - férmions ou bósons - não havendo uma terceira opção. A razão para isso é topológica, ou seja, depende exclusivamente da topologia do espaço. Em duas dimensões, entretanto, existem partículas que obedecem a regras estatísticas fracionárias, ou estatísticas ainda mais bizarras ditas não-abelianas, em que uma simples troca de dois anyons idênticos representa uma transformação unitária na função de onda do sistema ao invés de uma simples fase. Partículas que obedecem essas regras estatística não-usuais recebem o nome de anyons. Da mesma forma como a topologia do espaço em três dimensões dita as possíveis regras estatísticas que as partículas podem obedecer, a estatística aniônica está fortemente relacionando à topologia do espaço e, portanto, sistemas aniônicas são muitas vezes usados para descrever fases topológicas presentes em alguns sistemas bidimensionais. Neste trabalho apresentaremos alguns aspectos gerais de sistemas aniônicos - livres de modelo - e analisaremos alguns modelos de muitos corpos na rede que permitem descrever anyons como excitação de quasi-partícula. A principal classe de modelo que iremos analisar é a classe do modelo duplo quântico (MDQ) - que é um modelo quântico em (2+1)D cujos graus de liberdade são elementos de um grupo G (finito) vivendo nas arestas de uma rede e cuja dinâmica é descrita por uma hamiltoniana de muitos corpos. O MDQ é um modelo já bem estudado e conhecido na literatura; neste trabalho, porém, será apresentada uma formulação alternativa para o mesmo, a qual desempenha dois papeis importantes nesta tese. O primeiro deles é de mostrar que o MDQ pode ser obtido a partir da deformação de um invariante topológico; o que, por sua vez, ajuda a reconhecer a ordem topológica presente no modelo. O segundo papel importante é mostrar que essa formulação leva também a uma hamiltoniana de muitos corpos que representa uma generalização da hamiltoniana do MDQ. Alguns desses novos modelos permitem descrever sistemas aniônicos que não podem ser descritos pelo modelo duplo quântico usual. Em outras palavras, o modelo generalizado que será apresentado neste trabalho permite descrever diferentes fases topológicas partindo da deformação de um mesmo invariante topológico. / One of the most interesting properties of quantum particles is the indistinguishability of particles of the same kind (as for example two electrons). On three dimensions these particles are known to be either fermions or bosons depending on their statistical behaviour. The reason for that is topology, in other words these two possible statistics are due to the space topology. However, on two dimensions there are particles called anyons which are neither fermion nor boson; they may obey a fractional statistic or a even more weird non-abelian statistic - where a single exchange of two identical anyons a unitary transformation on the wave function instead of just acquiring a phase factor. As well as the usual fermionic and bosonic statistic, the anyonic statistic depends strongly on the space topology and thus anyonic systems are often used to describe topological phases of matter of two dimensional systems. In this work we are going to show some general (model free) aspects of anyonic systems and also analyse some many body systems that describe anyons as quasi-particle excitations. We will mostly study a class of model called quantum double models (QDMs). Quantum double models are (2+1)D models where the degrees of freedom are elements of a group G living on the edges of lattice and the dynamic is given by a many body hamiltonian. The QDM is a well known and studied model on the literature, however in this work we are going to show an alternative construction for QDMs which will play two very important roles in this thesis. First, it will allows us to obtain the QDMs from deforming a topological invariant, and that helps to easily identify the topological order on this model. Besides, one can also obtain a many body hamiltonian that represents a generalization of the the QDM hamiltonian. Some of these new models describe anyonic systems other than the ones that can be described by usual QDM. In other words, this new construction leads to a many body hamiltonian that can describe both quantum double models and generalizations of it as particular cases.
5

Ordem topológica com simetrias Zn e campos de matéria / Topological order with Zn symmetries and matter fields

Maria Fernanda Araujo de Resende 03 April 2017 (has links)
Neste trabalho, construímos duas generalizações de uma classe de modelos discretos bidimensionais, assim chamados \"Quantum Double Models\", definidos em variedades orientáveis, compactas e sem fronteiras. Na primeira generalização, introduzimos campos de matéria aos vértices e, na segunda, às faces. Além das propriedades básicas dos modelos, estudamos como se comporta a sua ordem topológica sob a hipótese de que os estados de base são indexados por grupos Abelianos. Na primeira generalização, surge um novo fenômeno de confinamento. Como consequência, a degenerescência do estado fundamental se torna independente do grupo fundamental sobre o qual o modelo está definido, dependendo da ação do grupo de calibre e do segundo grupo de homologia. A segunda generalização pode ser vista como o dual algébrico da primeira. Nela, as mesmas propriedades de confinamento de quasipartículas está presente, mas a degenerescência do estado fundamental continua dependendo do grupo fundamental. Além disso, degenerescências adicionais aparecem, relacionadas ao homomorfismo de coação entre os grupos de matéria e de calibre. / In this work, we constructed two generalizations of a class of discrete bidimensional models, the so called Quantum Double Models, defined in orientable, compact and boundaryless manifolds. In the first generalization we introduced matter fields to the vertices and, in the second one, to the faces. Beside the basic model properties, we studied its topological order behaviour under the hypothesis that the basic states be indexed by Abelian groups. In the first generalization, appears a new phenomenon of quasiparticle confinement. As a consequence, the ground state degeneracy becomes independent of the fundamental group of the manifold on which the model is defined, depending on the action of the gauge group and on the second group of homology. The second generalization can be seen as the algebraic dual of the first one. In it, the same quasiparticle confinement properties are present, but the ground state degeneracy stay dependent on the fundamental group. Besides, additional degeneracies appear, related to a coaction homomorphism between matter and gauge groups.
6

Tensor Category Constructions in Topological Phases of Matter

Huston, Peter 07 December 2022 (has links)
No description available.
7

Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.

Jimenez, Juan Pablo Ibieta 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
8

Designing topological quantum matter in and out of equilibrium

Iadecola, Thomas 08 November 2017 (has links)
Recent advances in experimental condensed matter physics suggest a powerful new paradigm for the realization of exotic phases of quantum matter in the laboratory. Rather than conducting an exhaustive search for materials that realize these phases at low temperatures, it may be possible to design quantum systems that exhibit the desired properties. With the numerous advances made recently in the fields of cold atomic gases, superconducting qubits, trapped ions, and nitrogen-vacancy centers in diamond, it appears that we will soon have a host of platforms that can be used to put exotic theoretical predictions to the test. In this dissertation, I will highlight two ways in which theorists can interact productively with this fast-emerging field. First, there is a growing interest in driving quantum systems out of equilibrium in order to induce novel topological phases where they would otherwise never appear. In particular, systems driven by time-periodic perturbations—known as “Floquet systems”—offer fertile ground for theoretical investigation. This approach to designer quantum matter brings its own unique set of challenges. In particular, Floquet systems explicitly violate conservation of energy, providing no notion of a ground state. In the first part of my dissertation, I will present research that addresses this problem in two ways. First, I will present studies of open Floquet systems, where coupling to an external reservoir drives the system into a steady state at long times. Second, I will discuss examples of isolated quantum systems that exhibit signatures of topological properties in their finite-time dynamics. The second part of this dissertation presents another way in which theorists can benefit from the designer approach to quantum matter; in particular, one can design analytically tractable theories of exotic phases. I will present an exemplar of this philosophy in the form of coupled-wire constructions. In this approach, one builds a topological state of matter from the ground up by coupling together an array of one-dimensional quantum wires with local interactions. I will demonstrate the power of this technique by showing how to build both Abelian and non-Abelian topological phases in three dimensions by coupling together an array of quantum wires.
9

A lattice model for topological phases

Andersson, Jonatan January 2013 (has links)
Matter exists in many different phases, for example in solid state or in liquid phase. There are also phases in which the ordering of atoms is the same, but which differ in some other respect, for example ferromagnetic and paramagnetic states. According to Landau's symmetry breaking theory every phase transition is connected to a symmetry breaking process. A solid material has discrete translational symmetry, while liquid phase has continuous translational symmetry. But it has turned out that there also exist phase transitions that can occur without a symmetry breaking. This phenomenon is called topological order. In this thesis we consider one example of a theoretical model constructed on a two dimensional lattice in which one obtains topological order.
10

Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.

Juan Pablo Ibieta Jimenez 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.

Page generated in 0.0779 seconds