• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.

Jimenez, Juan Pablo Ibieta 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
2

Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.

Juan Pablo Ibieta Jimenez 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
3

Gravity actions from matter actions

Witte, Christof 16 June 2014 (has links)
Ausgehend von der Forderung, dass die Dynamik klassischer Materiefelder auf einer glatten Mannigfaltigkeit prädiktiv und quantisierbar sein muss, leiten wir einen Satz von „Mastergleichungen“ her, deren Lösungen die Dynamik (in Form einer Lagrangedichte) der den Materiegleichungen zugrundeliegenden Geometrie beschreiben. Es gelingt also das physikalische Problem der Suche nach geeigneten Gravitationsdynamiken für eine beliebige tensorielle Raumzeitgeometrie, die physikalische Materie tragen kann, in die bloß noch mathematische Frage nach der Lösung eines Systems von linearen partiellen Differentialgleichungen zu reformulieren. Dieses Ergebnis fußt auf der Einsicht, dass die Forderung nach der Prädiktivität und Quantisierbarkeit einer Materietheorie zunächst die möglichen Klassen der zugrundeliegenden Raumzeitgeometrien auf solche beschränkt, die bi-hyperbolisch sind und die Unterscheidung von positiven und negativen Energien zulassen. Gleichzeitig stellen solche Materietheorien bereits alle kinematischen Strukturen zur Verfügung, die nötig sind, um die Dynamik der Geometrie als Anfangswertproblem zu formulieren. Die Mastergleichungen stellen dann einen Ausdruck dafür dar, dass die Lagrangefunktion der Gravitationsdynamik, die die zeitliche Entwicklung von geometrischen Anfangsdaten beschreibt, eine Darstellung der Hyperflächendeformationsalgebra sein muss, welche sich ausgehend von der Dynamik der Materietheorie direkt berechnen lässt. Wir geben eine allgemeine Vorgehensweise an, mit der sich die Mastergleichungen für eine beliebige tensorielle Raumzeitgeometrie herleiten lassen und illustrieren dieses Verfahren anhand von vier physikalisch relevanten Beispielen. Die Arbeit wird abgerundet durch ein Studium von Energie-Impuls-Tensoren von Materie auf tensoriellen Raumzeiten. / Starting from classical matter dynamics on a smooth manifold that are required to be predictive and quantizable, we derive a set of `gravitational master equations'' that determine the Lagrangian describing the dynamics of the geometry on which the matter dynamics are defined. We thus convert the physical problem of finding admissible gravitational dynamics for any tensorial geometry that can support physical matter equations into the clear mathematical task of solving a system of linear partial differential equations. This result builds on the insight that predictive and quantizable matter dynamics, on the one hand, restrict the class of admissible spacetime geometries to those that are bi-hyperbolic and energy-distinguishing, and, on the other hand, provide the necessary kinematical structure needed to formulate spacetime geometry dynamics as an initial value problem. The gravitational master equations then express the fact that the Lagrangian of the gravitational dynamics must arise as a representation of the algebra of hypersurface deformations---which can be calculated from the kinematical structure imprinted on the geometry by the matter field dynamics---on a suitable geometric phase space. We provide a general prescription of how to obtain the gravitational master equations for any candidate geometry and illustrate our procedure by way of four instructive examples. We solve the master equations for metric geometry supporting Maxwell theory, finding Einstein-Hilbert dynamics as the unique solution, and for a non-trivial composite geometry supporting modified Dirac dynamics. We also discuss generalized energy-momentum tensors of matter fields and their role as sources of the gravitational dynamics obtained from the gravitational master equations.

Page generated in 0.046 seconds