1 |
Regulation of the Target of Rapamycin Signaling Pathway in Saccharomyces cerevisiaePracheil, Tammy 17 May 2013 (has links)
An integrative, biochemical, genetic, and molecular biology approach utilizing gene manipulation, gene knock outs, plasmid based protein expression, and in vivo protein localization of fluorescence tagged proteins was employed to determine the function of an essential protein, Lst8, in TORC1 and TORC2 signaling and a previously uncharacterized complex, the Far3-7-8-9-10-11 complex (Far complex) in the budding yeast, Saccharomyces cerevisiae. Mutations in SAC7 and FAR11 suppressed lethality of both lst8 and tor2-21 mutations but not TORC1 inactivation, suggesting that the essential function of Lst8 is linked only to TORC2.
Far11, a component of a six-member complex, was found to interact with Tpd3 and Pph21, conserved components of Protein Phosphatase 2A (PP2A) via co-immunoprecipitation. Mutations in FAR11 and RTS1, which encodes a PP2A regulatory B subunit, restore phosphorylation to the TORC2 substrate Slm1 in a tor2-21 mutant. These data suggest that TORC2 signaling is antagonized by Far11-dependent PP2A activity.
To characterize the assembly of the Far complex in vivo, intracellular localization of the Far complex was examined by fluorescence microscopy. It was found that the Far complex localizes to the endoplasmic reticulum (ER). The data show that Far9 and Far10 are tail-anchored proteins that localize to the ER first and recruit a Far8-Far7-Far3 pre-complex. Far11 is found at the ER only when all other Far proteins are assembled at the ER. Surprisingly, ER localization is required for the Far Complex’s role TORC2 signaling because deletion of the tail-anchor domain of Far9 results in partial bypass of the tor2-21 mutant growth defect at 37 ˚C.
|
2 |
Tor Signaling in the Fungal KingdomBastidas, Robert Joseph January 2009 (has links)
<p>Fungal cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profiles and developmental programs to adapt readily and appropriately to changing nutritional states. In organisms ranging from yeasts to humans, the Tor signaling pathway responds to nutrient-derived signals and orchestrates cell growth. While in the baker's yeast <italic>Saccharomyces cerevisiae</italic> Tor responds to nutrient-derived signals and orchestrates cell growth and proliferation, in <italic>Schizosaccharomyces pombe</italic> Tor signaling modulates sexual differentiation in response to nutritional cues. Thus, these differences provide a framework to consider the roles of Tor in other fungal organisms, in particular those that are pathogens of humans. </p><p>In this dissertation, I demonstrate that in the human fungal pathogen <italic>Candida albicans</italic>, Tor signaling also functions to promote growth. This study also uncovered a novel role for the Tor molecular pathway in promoting hyphal growth of <italic>C. albicans</italic> on semi-solid surfaces and in controlling cell-cell adherence. Gene expression analysis and genetic manipulations identified several transcriptional regulators (Bcr1, Efg1, Nrg1, and Tup1) that together with Tor compose a regulatory network governing adhesin gene expression and cellular adhesion. While the Tor kinases are broadly conserved, these studies further demonstrate the contrasting strategies employed by fungal organism in utilizing the Tor signaling cascade.</p><p>While extensive studies have focused on elucidating functions for the Tor signaling cascades among ascomycetes, little is known about the pathway in basal fungal lineages, in particular among zygomycetes and chytrids. Moreover, given that the Tor pathway is the target of several small molecule inhibitors including rapamycin, a versatile pharmacological drug used in medicine, there is considerable interest in Tor signaling pathways and their function. Capitalizing on emerging genome sequences now available for several basal fungal species, we show a remarkable pattern of conservation, duplication, and loss of the Tor signaling cascade among basal fungal lineages. Targeting the pathway with rapamycin results in growth arrest of several zygomycete species, indicating a conserved role for this pathway in regulating fungal growth. In addition, we show a potential therapeutic advantage of using rapamycin in a heterologous model of zygomycosis. Taken together, the Tor signaling cascade and its inhibitors provide robust platforms from which to develop novel antimicrobial therapies, which may include less immunosuppressive rapamycin analogs.</p> / Dissertation
|
3 |
CPVIB-1, a GAGA Regulator of TOR Signaling Pathways in the Chestnut Blight Pathogen Cryphonectria ParasiticaRen, Di 10 August 2018 (has links)
Cryphonectria parasitica is the causal agent of chestnut blight, which devastated the American Chestnut tree population in the early 20th century. The discovery of hypoviruses that reduce the severity of the chestnut blight infection offers the potential for biological control. However, the spread of the hypoviruses is hampered by a diverse genetically controlled nonself-recognition system, vegetative incompatibility (vic). CPVIB-1 was identified as a transcription regulator playing an important role in the programmed cell death response to this stimulus. In this study, we have found that CPVIB-1 is ubiquitin-decorated which might lead to its degradation in the proteasome pathway. RNA-Seq and ChIP-Seq were used to further explore the downstream targets of CPVIB-1 that mediate the various metabolic changes that lead to the altered phenotype of the Δcpvib-1 mutant. Due to inaccuracies in the prior annotation, we performed a genome re-annotation to improve the accuracy using a MAKER2-two-pass pipeline. To validate the improvement a second pipeline, PEPA, was developed to compare quality metrics between the old and new annotations. Approximately 1/3 of the original annotations from 2009 were found to be inaccurate. Experimental confirmation by testing 27 predicted genes using a diagnostic PCR protocol to differentiate between prior and new transcript structures showed that over 80 % of tested genome locations supported for the new annotation. Using rapamycin treatment to mimic stimulation of the vic response and applying the RNA-seq and ChIP-seq data to this new information, we found that CPVIB-1 is related to TOR signaling pathways, promoting autophagy and the proteasome pathway, but repressing carbon metabolism, protein and lipid biosynthesis. In depth analysis of CPVIB-1-bound DNA targets showed that this protein is a member of the GAGA regulator family, a group of multifaceted transcription factors with diverse roles in gene activation and repression, maintenance of mitosis, and cell development. Following treatment with rapamycin the recognition sequence bound by CPBVIB-1 was altered leading to the regulation of different suite of genes with diverse metabolic functions. Ultimately, we have developed a revised model of TOR signaling pathway where TORC1 and TORC2 signaling pathways are connected by the action of CPVIB1.
|
4 |
Rôle du facteur d’initiation eIF3h dans la réinitiation de la traduction et dans la pathogénèse virale chez les plantes / The role of eukaryotic initiation factor eIF3h in translation reinitiation and viral pathogenesisMakarian, Joelle 02 December 2016 (has links)
La réinitiation de la traduction est un mécanisme permettant de traduire des ORF qui sont présents dans la région leader de différents ARNm cellulaires (uORF). La majorité des cas de réinitiation de la traduction chez les eucaryotes concerne des uORF de petite taille. Des stratégies alternatives ont été développées, entre autres par les virus, afin de réinitier la traduction après un long uORF. Le virus de la mosaïque du chou-fleur (CaMV) exprime un ARNm polycistronique codant la totalité des protéines virales. L’une d’entre elle, la protéine TAV (TransActivateur/Viroplasmine) est un facteur essentiel qui rend possible la réinitiation de la traduction après de longs ORF et qui, de plus, active la protéine kinase TOR. La sous-unité h du facteur d’initiation de la traduction eIF3, requise pour promouvoir la reinitiation après un petit ORF chez les plantes, a été identifiée comme étant une nouvelle cible de phosphorylation de la voie de signalisation de TOR. L’objectif principal de ma thèse a été d’élucider la fonction de la protéine eIF3h dans la réinitiation après un petit ORF ainsi que dans la réinitiation de la traduction, assurée par TAV, après un long ORF. Nous avons exploité les lignées transgéniques eif3h-1 d’Arabidopsis exprimant la protéine eif3h tronquée de son extrémité C-terminale, qui sont déficientes pour la réinitiation mais pas pour l’initiation de la traduction. Nous avons montré que la phosphorylation de eIF3h est essentielle pour stabiliser eIF3 au niveau des ribosomes durant l’élongation, ce qui favorise la ré-acquisition par le ribosome de facteurs nécessaires à la réinitiation de la traduction, et que la délétion de sa région Ct abolit son intégration dans le complexe eIF3. De plus, nous avons montré que eIF3h, la cible de la voie de signalisation de TOR, interagit avec S6K1. Des protoplastes préparés à partir des plantes mutantes eif3h-1 sont incapables de promouvoir la réinitiation après de longs ORF en présence de TAV. La surexpression de eIF3h, indifféremment de son état de phosphorylation, est indispensable pour restaurer la reinitiation assurée par TAV dans les protoplastes eif3h-1. Par ailleurs, les plantes eif3h-1 déficientes dans la réinitiation, sont résistantes à l’infection par le CaMV démontrant l’importance de eIF3h pour la réplication du CaMV. En revanche, ces plantes eif3h-1 peuvent être infectées par d’autres virus dont la traduction de l’ARN génomique est coiffe- ou IRES-dépendante. Ainsi, nos résultats suggèrent que eIF3h est un facteur de reinitiation important aussi bien pour la reinitiation après un petit qu’après un long ORF (controlée par TAV), et que TAV exploite cette machinerie cellulaire, et plus particulièrement TOR et eIF3h, pour exprimer ses propres protéines par réinitiation de la traduction. / Translation of mRNAs that harbor upstream open reading frames (uORFs) within their leader regions operates via a reinitiation mechanism. In plants, reinitiation is up regulated by the target of rapamycin (TOR) signaling via phosphorylation of the subunit h of initiation factor 3 (eIF3). The eif3h-1 mutant expressing the C-terminally truncated eIF3h while maintaining high translation initiation efficiency is not active in reinitiation. Cauliflower mosaic virus (CaMV) pregenomic polycistronic RNA is translated via an exceptional mechanism of reinitiation after long ORF translation under control of CaMV protein TAV, which ensures activation of TOR. To find the link between underlying mechanisms, we examined eIF3h function in cellular and viral context. Here we show that eIF3h, if phosphorylated, has a role in recruitment of eIF3 into actively translating ribosomes that is a prerequisite for formation of reinitiation-competent ribosomal complexes. C-terminal truncation of eIF3h abolished its integration into the eIF3 complex and eIF3 loading on polysomes as manifested by the eIF3 core subunit c. We also show that eIF3h as a putative target of TOR/S6K1 binds S6K1 in vitro. eIF3h phosphorylation is not required for eIF3 complex formation. We demonstrated that eIF3h is essential for TAV to activate reinitiation after long ORF translation. Protoplasts derived from eif3h-1 mutant failed to support TAV function in reinitiation, which is restored only upon overexpression of recombinant eIF3h indifferent to its phosphorylation status. eif3h-1 mutant defective in reinitiation was found resistant to CaMV infection suggesting that eIF3h is critical for virus amplification. In contrast, viruses that evolve translation initiation dependent on either cap or the internal ribosome entry site infect reinitiation deficient mutant. Thus, we conclude that TAV exploits the basic cell reinitiation machinery, particularly TOR and eIF3h, to overcome cellular barriers to reinitiation after long ORF translation.
|
5 |
Fonction de la protéine cellulaire RISP (Reinitiation Supporting Protein) dans la reinitiation de la traduction chez les plantes / Functional role of the Reinitiation Supporting Protein (RISP) in plant translation initiation and reinitiationMancera-Martinez, Eder Alberto 24 November 2014 (has links)
Chez Arabidopsis, la protéine RISP est détournée par le virus CaMV pour assurer, ensemble avec la protéine virale TAV, la traduction de son ARN polycistronique. RISP a été identifiée comme une cible de la voie de signalisation de TOR et il a été montré que sa phosphorylation est requise pour promouvoir la réinitiation de la traduction activée par TAV. Les résultats que j’ai obtenus suggèrent que RISP, lorsqu’elle n’est pas phosphorylée, intervient ensemble avec eIF3, au niveau du complexe de pré-initiation 43S pour recruter le complexe ternaire grâce à l’interaction entre RISP et la sous-unité b du facteur eIF2. Il s’est avéré que RISP a la capacité, lorsqu’elle est phosphorylée, d’interagir non seulement avec la protéine ribosomique eL24 mais également avec eS6. Nos résultats indiquent que la liaison entre les sous-unités ribosomiques 60S et 40S sous l’effet de RISP, est régulée par la voie de TOR et qu’elle joue un rôle important dans le contrôle de la réinitiation de la traduction. / Many factors are required to recruit the tRNAi and a 60S ribosomal subunit to the 40S ribosomal subunit preinitiation complex. This recruitment is normally strictly limited during reinitiation of translation if factors recruited during the primary translation event are shed from 40S. However, factor retention can occur during long ORF translation if the CaMV viral factor TAV is present. RISP is a downstream target of TOR and found either within the 43S preinitiation complex, if bound to eIF3, and/or attached to 60S, if phosphorylated by TOR. We show here that RISP interacts with subunit b of eIF2 before phosphorylation. Critically, TOR activation up-regulates phosphorylation of both RISP and eS6 as well as the binding of both factors. Importantly, eS6-deficient plants are less active in TAV-mediated reinitiation and are thus less susceptible to CaMV infection. It is attractive to propose that eS6 phosphorylation contributes to retention and re-use of 60S during 40S scanning.
|
Page generated in 0.0189 seconds