• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 13
  • 12
  • 10
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamic Modelling and Stability Controller Development for Articulated Steer Vehicles

Lashgarian Azad, Nasser January 2006 (has links)
In this study, various stability control systems are developed to remove the lateral instability of a conventional articulated steer vehicle (ASV) during the oscillatory yaw motion or “snaking mode”. First, to identify the nature of the instability, some analyses are performed using several simplified models. These investigations are mainly focused on analyzing the effects of forward speed and of two main subsystems of the vehicle, the steering system and tires, on the stability. The basic insights into the stability behavior of the vehicle obtained from the stability analyses of the simplified models are verified by conducting some simulations with a virtual prototype of the vehicle in ADAMS. To determine the most critical operating condition with regard to the lateral stability and to identify the effects of vehicle parameters on the stability, various studies are performed by introducing some modifications to the simplified models. Based on these studies, the disturbed straight-line on-highway motion with constant forward speed is recognized as the most critical driving condition. Also, the examinations show that when the vehicle is traveling with differentials locked, the vehicle is less prone to the instability. The examinations show that when the vehicle is carrying a rear-mounted load having interaction with ground, the instability may happen if the vehicle moves on a relatively good off-road surface. Again, the results gained from the analyses related to the effects of the vehicle parameters and operating conditions on the stability are verified using simulations in ADAMS by making some changes in the virtual prototype for any case. To stabilize the vehicle during its most critical driving condition, some studies are directed to indicate the shortcomings of passive methods. Alternative solutions, including design of different types of stability control systems, are proposed to generate a stabilizing yaw moment. The proposed solutions include an active steering system with a classical controller, an active torque vectoring device with a robust full state feedback controller, and a differential braking system with a robust variable structure controller. The robust controllers are designed by using simplified models, which are also used to evaluate the ability to deal with the uncertainties of the vehicle parameters and its variable operating conditions. These controllers are also incorporated into the virtual prototype, and their capabilities to stabilize the vehicle in different operating conditions and while traveling on different surfaces during the snaking mode are shown.
12

Diferenciály s řízeným dělením momentu pro těžká užitková vozidla / Torque Vectoring Differentials for Heavy Commercial Vehicles

Fojtášek, Jan January 2020 (has links)
This work deals with the assessment of the yaw moment control via active differential effects to the heavy commercial vehicle dynamics. Summarized are the findings about design of active differential, control algorithms and theoretical assumptions about overall effects to the vehicle dynamics. According to the described theory the own concept of the active differential for experimental heavy commercial vehicle is proposed. The main part of the work is focused on the effects of the active differential on vehicle manoeuvrability, controllability, stability and limits analysis. For this purpose, multibody dynamic model of the complete vehicle with standard open differential is assembled and results of the selected manoeuvre simulations validated by measurements of the real vehicle characteristics. The validated vehicle model is then extended by the model of the active differential with control algorithm. According to the simulations results the theoretical presumptions are confirmed and the effects of the active differential on vehicle dynamics in steady and transition states are evaluated. Based on the described findings the overall improvement of the vehicle dynamics by this technology, feasibility of the proposed concept and main advantages and disadvantages are evaluated.
13

Elektronická stabilizace podvozku Formule Student / Electronic Stability Control for Formula Student

Bařinka, Martin January 2020 (has links)
Goal of this semestral thesis is development of chassis electronic stability control ESP. Thesis analyze kinematic model of chassis, design of dynamic model, which is used for simulation of designed systems. Final system will be used in Formule Student monopost.
14

Torque vectoring to maximize straight-line efficiency in an all-electric vehicle with independent rear motor control

Brown, William Blake 10 December 2021 (has links) (PDF)
BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to other areas such as investigating the control strategy of the powertrain. If two or more electric motors are present in an electric vehicle, Torque Vectoring (TV) strategies are an option to further increase the fuel economy of electric vehicles. Most of the torque vectoring strategies in literature focus exclusively on enhancing the vehicle stability and dynamics with few approaches that consider efficiency or energy consumption. The limited research on TV that addresses system efficiency have been done on a small number of vehicle architectures, such as four independent motors, and are distributing torque front/rear instead of left/right which would not induce any yaw moment. The proposed research aims to address these deficiencies in the current literature. First, by implementing an efficiency-optimized TV strategy for a rear-wheel drive, dual-motor vehicle under straight-line driving as would be experienced in during the EPA drive cycle tests. Second, by characterizing the yaw moment and implementing strategies to mitigate any undesired yaw motion. The application of the proposed research directly impacts dual-motor architectures in a way that improves overall efficiency which also drives an increase in fuel economy. Increased fuel economy increases the range of electric vehicles and reduces the energy demand from an electrical source that may be of non-renewable origin such as coal.
15

Analysis of Torque Vectoring Systems through Tire and Vehicle Model Simulation

Chatfield, Christopher 08 August 2023 (has links)
No description available.
16

Investigation of the comfort improvements by an integrated chassis control strategy / Undersökning av komfortförbättringar med en integrerad chassireglerstrategi

Ge, Zhaohui January 2021 (has links)
Autonomous driving is one of the megatrends in today’s automotive industry. Passengers are expected to do more non-driving tasks in an autonomous driving vehicle. Therefore, the comfort of the vehicle has become a more important factor for the passengers. This thesis investigates the possibility of increasing comfort through an integrated active chassis control strategy. First, this thesis has defined comfort in objective ways. Then, the objective comfort evaluation variables are used for comfort evaluation of the vehicle in different scenarios. The improvement in comfort is evaluated for four active chassis systems, including active suspension, active anti-roll bar, active rear-wheel steering and torque vectoring systems. Since more than one active chassis system can affect vehicle body motion in one direction, those four active chassis systems should be controlled in an integrated way. The model predictive control (MPC) is used because it can control a multi-input multi-output system in an optimized way. Two MPC controllers have been developed in this thesis to control multiple active chassis systems for comfort improvement. The original MPC controller is a linear MPC controller that uses a time-invariant state-space vehicle model. The adaptive MPC controller is a linear MPC controller that uses a time-variant state-space vehicle model. These two controllers are tested in the simulation software CarMaker with various scenarios, such as slalom, double lane-change, and bumps that are both symmetrical and shifted unsymmetrical. Finally, the simulation results are evaluated with objective comfort evaluation methods to assess the controller performances in comfort improvement. In conclusion, the model predictive control can be a feasible way to improve comfort with multiple active chassis systems. The simulation results show that the two MPC controllers can reduce the objective comfort evaluation variables. The discussions of the design process and simulation results point out future works that need to be done before this project becomes a product of real vehicles. / Autonom körning är en av megatrenderna i dagens bilindustri. Passagerare förväntas utföra fler icke-körrelaterade uppgifter i ett autonomt fordon. Därför har fordonets komfort blivit en allt viktigare faktor för passagerarna. Denna avhandling undersöker möjligheten att öka komforten genom en integrerad aktiv chassikontrollstrategi. Som utgångspunkt har denna avhandling definierat komfort på objektiva sätt. Sedan används de objektiva komfortvärderingsvariablerna för komfortutvärdering av fordonet i olika scenarier. Förbättringen av komfort utvärderas för fyra aktiva chassisystem, inkluderande aktiv fjädring, aktiv krängningshämmare, aktiv bakhjulsstyrning och drivmomentvektorisering. Eftersom mer än ett aktivt chassisystem kan påverka fordonets rörelse i en riktning, bör dessa fyra aktiva chassisystem styras på ett integrerat sätt. Modellprediktiv reglering (MPC) används eftersom den kan styra ett multi-input multi-output system på ett optimerat sätt. Två MPC-reglersystem har utvecklats för att styra flera aktiva chassisystem för komfortförbättring. Den ursprungliga MPC-reglerenheten är en linjär MPC-regulator som använder en tidsinvariant fordonsmodell. Den adaptiva MPC-reglerenheten är en linjär MPC-regulator som använder en tidsvariant fordonsmodell. Dessa två reglersystem testas i simuleringsprogramvaran CarMaker i olika scenarier, till exempel slalom, dubbelt körfältsbyte och väg-gupp som är både symmetriska och osymmetriska. Slutligen utvärderas simuleringsresultaten med objektiva komfortutvärderingsmetoder för att bedöma reglersystemens komfortförbättring. Sammanfattningsvis kan modellprediktiv reglering vara ett genomförbart sätt att förbättra komforten med flera aktiva chassisystem. Simuleringsresultaten visar att de två MPC-regulatorerna kan reducera de objektiva komfortutvärderingsvariablerna. Diskussionerna om designprocessen och simuleringsresultaten tar upp framtida arbeten som behöver göras innan detta projekt kan förverkligas i riktiga fordon.
17

Predictive vehicle motion control for post-crash scenarios

Nigicser, David January 2017 (has links)
The aim of the project is to design an active safety system forpassenger vehicles for mitigating secondary collisions after an initialimpact. The control objective is to minimize the lateral deviationfrom the known original path while achieving a safe heading angle afterthe initial collision. A hierarchical controller structure is proposed:the higher layer is formulated as a linear time varying model predictivecontroller that denes the virtual control moment input; the lowerlayer deploys a rule-based controller that realizes the requested moment.The designed control system is then tested and validated inSimulink as well as in IPG CarMaker, a high delity vehicle dynamicssimulator. / Syftet med projektet är att för personbilar designa ett aktivtsäkerhetssystem för att undvika följdkollisioner efter en första kollision.Målet är att minimera den laterala avvikelsen från den ursprungligafärdvägen och att samtidigt uppnå en säker kurs efter den första kollisionen.En hierarkisk regulatorstruktur föreslås. Det övre skiktet iregulatorn är formulerat som en linjär tidsvarierande modell prediktivkontroller som definierar den virtuella momentinmatningen. Det nedreskiktet använder en regelbaserad regulator som realiserar det begärdamomentet. Det konstruerade styrsystemet testades och validerades sedani Simulink samt i IPG CarMaker, en simulator med hög precisionför fordonsdynamik.

Page generated in 0.0826 seconds