• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 29
  • 20
  • 12
  • 10
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 300
  • 300
  • 186
  • 52
  • 42
  • 40
  • 40
  • 34
  • 28
  • 26
  • 23
  • 23
  • 22
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Air carrier liability and automation issues

Aguilar Cortés, Carlos Ezequiel January 2002 (has links)
No description available.
152

Dynamic Message Sign and Diversion Traffic Optimization

Gou, Jizhan 11 December 2009 (has links)
This dissertation proposes a Dynamic Message Signs (DMS) diversion control system based on principles of existing Advanced Traveler Information Systems and Advanced Traffic Management Systems (ATMS). The objective of the proposed system is to alleviate total corridor traffic delay by choosing optimized diversion rate and alternative road signal-timing plan. The DMS displays adaptive messages at predefined time interval for guiding certain number of drivers to alternative roads. Messages to be displayed on the DMS are chosen by an on-line optimization model that minimizes corridor traffic delay. The expected diversion rate is assumed following a distribution. An optimization model that considers three traffic delay components: mainline travel delay, alternative road signal control delay, and the travel time difference between the mainline and alternative roads is constructed. Signal timing parameters of alternative road intersections and DMS message level are the decision variables; speeds, flow rates, and other corridor traffic data from detectors serve as inputs of the model. Traffic simulation software, CORSIM, served as a developmental environment and test bed for evaluating the proposed system. MATLAB optimization toolboxes have been applied to solve the proposed model. A CORSIM Run-Time-Extension (RTE) has been developed to exchange data between CORSIM and the adopted MATLAB optimization algorithms (Genetic Algorithm, Pattern Search in direct search toolbox, and Sequential Quadratic Programming). Among the three candidate algorithms, the Sequential Quadratic Programming showed the fastest execution speed and yielded the smallest total delays for numerical examples. TRANSYT-7F, the most credible traffic signal optimization software has been used as a benchmark to verify the proposed model. The total corridor delays obtained from CORSIM with the SQP solutions show average reductions of 8.97%, 14.09%, and 13.09% for heavy, moderate and light traffic congestion levels respectively when compared with TRANSYT-7F optimization results. The maximum model execution time at each MATLAB call is fewer than two minutes, which implies that the system is capable of real world implementation with a DMS message and signal update interval of two minutes.
153

EFFICIENT ALGORITHMS FOR OPTIMAL ARRIVAL SCHEDULING AND AIR TRAFFIC FLOW MANAGEMENT

SARAF, ADITYA P. January 2007 (has links)
No description available.
154

Multi-Modal Smart Traffic Signal Control Using Connected Vehicles

Rajvanshi, Kshitij January 2016 (has links)
No description available.
155

Achieving Efficient Spectrum Usage in Passive and Active Sensing

Wang, Huaiyi 18 May 2017 (has links)
No description available.
156

Model prediction of the effects of ameliorating cosmetics on the performance of airport surveillance radar and air traffic control radar beacon systems

Fofie, Francis Obeng January 2003 (has links)
No description available.
157

Increasing capacity by the use of optimal runway exits, automated landing, roll out and turnoff in an airport environment

Nam, Amadou Sylla January 1986 (has links)
This study outlines the development and use of several techniques providing an automated landing, roll out and turnoff of an aircraft, in an airport environment. A maximum runway occupancy time and a certain level of reliability are achieved by the use of a computer software called the Probabilistic Computer Model of Optimal Runway Turnoffs. A bunching of eight optimal high speed exits, representing four TERPS categories, is performed on a single runway. Feasibility of the system is determined by the use of Inertial Navigation and other aids such as the Microwave Landing System, Filtering Devices, Electronic Cockpit Airfield Display Formats, Real Time Flight Simulation and Field Testing, and a Braking Guidance Policy. It is suggested that future testing and a review of the Model be done. / M.S.
158

Real Time Identification of Road Traffic Control Measures

Almejalli, Khaled A., Dahal, Keshav P., Hossain, M. Alamgir January 2007 (has links)
No / The operator of a traffic control centre has to select the most appropriate traffic control action or combination of actions in a short time to manage the traffic network when non-recurrent road traffic congestion happens. This is a complex task, which requires expert knowledge, much experience and fast reaction. There are a large number of factors related to a traffic state as well as a large number of possible control actions that need to be considered during the decision making process. The identification of suitable control actions for a given non-recurrent traffic congestion can be tough even for experienced operators. Therefore, simulation models are used in many cases. However, simulating different traffic actions for a number of control measures in a complicated situation is very time-consuming. This chapter presents an intelligent method for the real-time identification of road traffic actions which assists the human operator of the traffic control centre in managing the current traffic state. The proposed system combines three soft-computing approaches, namely fuzzy logic, neural networks, and genetic algorithms. The system employs a fuzzy-neural network tool with self-organization algorithm for initializing the membership functions, a genetic algorithm (GA) for identifying fuzzy rules, and the back-propagation neural network algorithm for fine tuning the system parameters. The proposed system has been tested for a case-study of a small section of the ring-road around Riyadh city in Saudi Arabia. The results obtained for the case study are promising and demonstrate that the proposed approach can provide an effective support for real-time traffic control.
159

Design framework for the graphical user interface of a terminal area air traffic advisory system

Beamon, Courtney A. 18 November 2008 (has links)
The purpose of this research thesis was to develop a framework and methodology for the design of a graphical user interface to be used by air traffic controllers. The interface is intended to be only a part of a complete Advisory System designed to supplement the tasks of terminal area air traffic controllers. This research addresses many of the human factors issues associated with the development of the display. The research takes a user-perspective and applies the principles of rapid prototyping to develop the framework for the design of the interface. Attention is also given to the previous research that explores the implications of automating various air traffic control tasks. Finally, a prototype system was developed to fulfill one of the primary rapid prototyping steps. The prototype displays the general format for the various advisories and presents three typical scenarios where the system may be of particular use. In the future, the prototype can be used to gather additional information on the opinions and requirements of the future system users - air traffic controllers. It is anticipated that moderate benefits can be attained through the implementation of such a system, provided that the interface satisfies the user requirements. / Master of Science
160

Development of Aircraft Wake Vortex Dynamic Separations Using Computer Simulation and Modeling

Roa Perez, Julio Alberto 29 June 2018 (has links)
This dissertation presents a research effort to evaluate wake vortex mitigation procedures and technologies in order to decrease aircraft separations, which could result in a runway capacity increase. Aircraft separation is a major obstacle to increasing the operational efficiency of the final approach segment and the runway. An aircraft in motion creates an invisible movement of air called wake turbulence, which has been shown to be dangerous to aircraft that encounter it. To avoid this danger, aircraft separations were developed in the 1970s, that allows time for wake to be dissipated and displaced from an aircraft's path. Though wake vortex separations have been revised, they remain overly conservative. This research identified 16 concepts and 3 sub-concepts for wake mitigation from the literature. The dissertation describes each concept along with its associated benefits and drawbacks. All concepts are grouped, based on common dependencies required for implementation, into four categories: airport fleet dependent, parallel runway dependent, single runway dependent, and aircraft or environmental condition dependent. Dynamic wake vortex mitigation was the concept chosen for further development because of its potential to provide capacity benefit in the near term and because it is initiated by air traffic control, not the pilot. Dynamic wake vortex mitigation discretizes current wake vortex aircraft groups by analyzing characteristics for each individual pair of leader and follower aircraft as well as the environment where the aircraft travel. This results in reduced aircraft separations from current static separation standards. Monte Carlo simulations that calculate the dynamic wake vortex separation required for a follower aircraft were performed by using the National Aeronautics and Space Administration (NASA) Aircraft Vortex Spacing System (AVOSS) Prediction Algorithm (APA) model, a semi-empirical wake vortex behavior model that predicts wake vortex decay as a function of atmospheric turbulence and stratification. Maximum circulation capacities were calculated based on the Federal Aviation Administration's (FAA) proposed wake recategorization phase II (RECAT II) 123 x 123 matrix of wake vortex separations. This research identified environmental turbulence and aircraft weight as the parameters with the greatest influence on wake vortex circulation strength. Wind has the greatest influence on wake vortex lateral behavior, and aircraft mass, environmental turbulence, and wind have the greatest influence on wake vortex vertical position. The research simulated RECAT II and RECAT III dynamic wake separations for Chicago O'Hare International (ORD), Denver International Airport (DEN) and LaGuardia Airport (LGA). The simulation accounted for real-world conditions of aircraft operations during arrival and departure: static and dynamic wake vortex separations, aircraft fleet mix, runway occupancy times, aircraft approach speeds, aircraft wake vortex circulation capacity, environmental conditions, and operational error buffers. Airport data considered for this analysis were based on Airport Surface Detection Equipment Model X (ASDE-X) data records at ORD during a 10-month period in the year 2016, a 3-month period at DEN, and a 4-month period at LGA. Results indicate that further reducing wake vortex separation distances from the FAA's proposed RECAT II static matrix, of 2 nm and less, shifts the operational bottleneck from the final approach segment to the runway. Consequently, given current values of aircraft runway occupancy time under some conditions, the airport runway becomes the limiting factor for inter-arrival separations. One of the major constraints of dynamic wake vortex separation at airports is its dependence on real-time or near-real-time data collection and broadcasting technologies. These technologies would need to measure and report temperature, environmental turbulence, wind speed, air humidity, air density, and aircraft weight, altitude, and speed. / PHD

Page generated in 0.52 seconds