• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 27
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 136
  • 136
  • 35
  • 28
  • 27
  • 25
  • 24
  • 21
  • 19
  • 19
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling the interaction between passenger cars and trucks

Jenkins, Jacqueline Marie 15 November 2004 (has links)
The topic of this dissertation was the use of distributed computing to improve the modeling of the interaction between passenger cars and trucks. The two main focus areas were the development of a methodology to combine microscopic traffic simulation programs with driving simulator programs, and the application of a prototype distributed traffic simulation to study the impact of the length of an impeding vehicle on passing behavior. The methodology was motivated by the need to provide an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however problems were encountered that imposed limitations on its development and use. The passing study was motivated by the possible changes in federal truck size and weight regulations and the current inconsistency between the passing sight distance criteria for the design of two lane highways and the marking of no-passing zones. Test drivers made passing maneuvers around impeding vehicles that differed in length and speed. The main effects of the impeding vehicle length were found to be significant for the time and distance in the left lane, and the start and end gap distances. Passing equations were formulated based on the mechanics of the passing maneuver and included behavior variables for calibration. Through a sensitivity analysis, it was shown that increases in vehicle speeds, vehicle length, and gap distance increased the distance traveled in the left lane, while increases in the speed difference and speed gain decreased the distance traveled in the left lane. The passing equations were calibrated using the current AASHTO values and used to predict the impact of increased vehicle lengths on the time and distance in the left lane. The passing equations are valuable for evaluating passing sight distance criteria and observed passing behavior.
12

Generalized real-time route guidance strategies in urban networks

Chiu, Yi-chang 18 April 2011 (has links)
Not available / text
13

Traffic Simulation Modelling of Rural Roads and Driver Assistance Systems

Tapani, Andreas January 2008 (has links)
Microscopic traffic simulation has proven to be a useful tool for analysis of varioustraffic systems. This thesis consider microscopic traffic simulation of rural roads andthe use of traffic simulation for evaluation of driver assistance systems. A traffic simulation modelling framework for rural roads, the Rural Traffic Simulator(RuTSim), is developed. RuTSim is designed for simulation of traffic on singlecarriageway two-lane rural roads and on rural roads with separated oncoming trafficlanes. The simulated traffic may be interrupted by vehicles entering and leaving themodelled road at intersections or roundabouts. The RuTSim model is applied for analysis of rural road design alternatives.Quality-of-service effects of three alternatives for oncoming lane separation of anexisting Swedish two-lane road are analysed. In another model application, RuTSimis used to simulate traffic on a Dutch two-lane rural road. This application illustratesthat the high level of model detail of traffic micro-simulation may call for use of differentmodelling assumptions regarding driver behaviour for different applications,e. g. for simulation of traffic in different cultural regions. The use of traffic simulation for studies of driver assistance systems facilitateimpact analyses already at early stages of the system development. New and additionalrequirements are however then placed on the traffic simulation model. It isnecessary to model both the system functionality of the considered driver assistancesystem and the driver behaviour in system equipped vehicles. Such requirements canbe analysed using RuTSim. In this thesis, requirements on a traffic simulation model to be used for analysisof road safety effects of driver assistance systems are formulated and investigatedusing RuTSim. RuTSim is also applied for analyses of centre line rumble stripson two-lane roads, of an overtaking assistant and of adaptive cruise control. Thesestudies establish that the assumptions made regarding driver behaviour are crucialfor traffic simulation based analyses of driver assistance systems.
14

Developing a procedure to identify parameters for calibration of a vissim model

Miller, David Michael 12 January 2009 (has links)
The calibration of microscopic traffic simulation models is an area of intense study; however, additional research is needed into how to select which parameters to calibrate. In this project a procedure was designed to eliminate the parameters unnecessary for calibration and select those which should be examined for a VISSIM model. The proposed iterative procedure consists of four phases: initial parameter selection, measures of effectiveness selection, Monte Carlo experiment, and sensitivity analysis and parameter elimination. The goal of the procedure is to experimentally determine which parameters have an effect on the selected measures of effectiveness and which do not. This is accomplished through the use of randomly generated parameter sets and subsequent analysis of the generated results. The second phase of the project involves a case study on implementing the proposed procedure on an existing VISSIM model of Cobb Parkway in Atlanta, Georgia. Each phase of the procedure is described in detail and justifications for each parameter selection or elimination are explained. For the case study the model is considered under both full traffic volumes and a reduced volume set representative of uncongested conditions.
15

Weiterentwicklung eines mikroskopischen Verkehrsfluss-Simulators und Analyse der Stauentstehung an Engstellen

Gidion, Fritjof 15 November 2016 (has links) (PDF)
Developing a traffic-flow simulation is one of the first steps to gain understanding of how traffic congestion occurs. This simulation will run the Intelligent-Driver-Model with an added simple lane-change model, settled in an on-ramp bottleneck environment. It aims at pointing out different styles of driver behaviour that can lead to traffic disturbances and jams. Besides analysing various traffic situations the JavaScript source code will partially be displayed and discussed.
16

The Development of a Dynamic-Interactive-Vehicle Model for Modeling Traffic Beyond the Microscopic Level

Henclewood, Dwayne A 01 January 2007 (has links) (PDF)
The state-of-the-art traffic simulation packages model traffic on a microscopic level. This includes the use of several sets of models that dictate how traffic moves within a transportation network. These models include car-following, gap acceptance, lane-changing and route choice models. The aim of this thesis is to improve the treatment of vehicle dynamics in traffic simulation and, as a result, special attention was paid to car-following models. These models were highlighted because they are largely responsible for capturing a vehicle’s motion and its relevant dynamics in traffic simulation. In order to improve the treatment of vehicle dynamics in traffic simulation, a Dynamic-Interactive-Vehicle (DIV) model was developed. This vehicle model is calibrated with the use of essential vehicle performance specifications that are responsible for the movement of a vehicle in a transportation network. After the calibration process the model is able to accept three inputs from a driver – gas pedal, brake pedal and steering wheel positions. The model then outputs the corresponding longitudinal and latitudinal values which represent the movement of a vehicle along a roadway. The vehicle model will also account for most of the dominant external forces that affect an automobile’s performance along a roadway. This thesis will validate the proposed model by comparing its output from a few performance tests with the performance test results of three passenger cars. The DIV model was validated by comparing the acceleration, braking and steering performance test results of three passenger cars with the output from the DIV model upon performing similar tests. It was found that the DIV model was successful at replicating the two-dimensional vehicle motion.
17

A Comparison of CORSIM and INTEGRATION for the Modeling of Stationary Bottlenecks

Crowther, Brent C. 14 May 2001 (has links)
Though comparisons of simulation models have been conducted, few investigations have examined in detail the logical differences between models. If the output measures of effectiveness are to be interpreted correctly, it is important that the analyst understand some of the underlying logic and assumptions upon which the results are based. An understanding of model logic and its inherent effect on the results will aid the transportation analyst in the application and calibration of a simulation model. In this thesis, the car-following behavior of the CORSIM and INTEGRATION simulation models are examined in significant detail, and its impact on output results explained. In addition, the thesis presents a calibration procedure for the CORSIM sub-model, FRESIM. Currently, FRESIM is calibrated by ad hoc trial-and-error, or by utilizing empirically developed cross-referencing tables. The literature reveals that the relationship between the microscopic input parameters of the CORSIM model, and the macroscopic parameters of capacity is not understood. The thesis addresses this concern. Finally, the thesis compares the INTEGRATION and CORSIM models in freeway and urban environments. The comparison is unique in that the simulated networks were configured such that differences in results could be identified, isolated, and explained. Additionally, the simplified nature of the test networks allowed for the formulation of analytical solutions. The thesis begins by relating steady-state car-following behavior to macroscopic traffic stream models. This is done so that a calibration procedure for the FRESIM (Pipes) car-following model could be developed. The proposed calibration procedure offers an avenue to calibrate microscopic car-following behavior using macroscopic field measurements that can be easily obtained from loop detectors. The calibration procedure, while it does not overcome the inherent shortcomings of the Pipes model, does provide an opportunity to better calibrate the network FRESIM car-following sensitivity factor to existing roadway conditions. The thesis then reports an observed inconsistency in the link-specific car-following sensitivity factor of the FRESIM model. Because calibration of a network on a link-specific basis is key to an accurate network representation, a correction factor was developed that should be applied to the analytically calculated link-specific car-following sensitivity factor. The application of the correction factor resulted in observed saturation flow rates that were within 5% of the desired saturation flow rates. The thesis concludes with a comparison of the CORSIM and INTEGRATION models for transient conditions. As a result of the various intricacies and subtleties that are involved in transient behavior, the comparisons were conducted by running the models on simple networks where analytical solutions to the problem could be formulated. In urban environments, it was observed that the models are consistent in estimates of delay and travel time, and inconsistent in estimates of vehicle stops, stopped delay, fuel consumption, and emissions. Specifically, it was observed that the NETSIM model underestimates the number of vehicle stops in comparison with INTEGRATION and the analytical formulation. It was also observed that the NETSIM vehicles speed and acceleration profiles are characterized by abrupt accelerations and decelerations. These abrupt movements significantly impact stopped time delay and vehicle emissions estimates. Inconsistencies in emissions estimates can also be attributed to differences in the embedded rate tables of each model. In freeway environments for under-saturated conditions, INTEGRATION returned higher values of travel time and delay, and lower values of average speed than the FRESIM model. These results are consistent with the analytical solution, and can be attributed to the speed-flow relationship of each model. In saturated conditions, when the capacity of the bottleneck is equal to the demand volume, the emergent vehicle behavior of the FRESIM model was observed to be inconsistent with the analytical solution. The FRESIM vehicles were observed to dramatically decelerate upon entering a lower-capacity link. This deceleration behavior led to higher travel time and delay time estimates in FRESIM than in INTEGRATION. In over-saturated conditions, longer queue lengths were observed in FRESIM than in INTEGRATION, resulting in slightly higher travel and delay estimates in the FRESIM model. The reason for the discrepancy in queue lengths is unclear, as the network jam density in each model was equivalent. / Master of Science
18

Simulation And Continuance Of Operation For The Use Of Transit (lynx) To Be Used In Emergency Evacuation Incidents

Elmitiny, Noor 01 January 2006 (has links)
The evacuation planning has become an important issue addressed by many research studies and publications aiming to improve the security of the daily life for our public inside the United States of America. The main objective of this research was to address the growing need for evacuation planning using traffic simulation. With increased interests and awareness in emergency evacuation and first responder access to emergencies in public locations (airports, transit stations, ports or stadiums), the traffic simulation can be helpful in orchestrating the traffic flow during emergencies. Related to this issue, Federal Transit Administration has issued a large number of publications and guidelines concerning emergency preparedness and incident management. These guidelines are used to develop a simulation-based activity to evaluate the current plan and alternative plans for the deployment of transit during an emergency situation. A major task for this project is to study the effect of evacuation on the surrounding traffic network and help the local transit company (LYNX) to evaluate their evacuation plan and consider different possibilities without the risk and cost of actual evacuation drills. A set of different scenarios and alternatives for each scenario were simulated and studied to reach the best possible evacuation strategy. The main findings were evacuation as pedestrians have less impact on traffic network and rerouting decreases the congestion resulting from the evacuation process.
19

Real-time Open Source Traffic Control Software For The Advance Traffic Controller

Key, Justin 01 January 2012 (has links)
Under the initiative of Department of Transportation (DOT) a safety-critical, dual redundant, open source traffic signal control application is currently being developed. The system named SCOPE, for Signal Control Program Environment, currently implements standard 8-phase NEMA logic and the National Cooperative Highway Research Program 3-66 preemption logic. SCOPE is designed to be part of the Advanced Traffic Controller (ATC), making use of API standard 2.06b to integrate with the hardware. Safety-critical status is achieved through redundancy of application logic that constantly compares expected signal phase information. From baseline requirements, engineers independently program application code, one using Ada95 and the other using C++. The Traffic EXperimental Analytical Simulation Model, a microscopic single-intersection vehicular simulation, was used for initial validation and testing of the functionality of the system. The second demonstration of the SCOPE, used actuated detector data collected from a recording of a live intersection. Actuator calls were placed on SCOPE at the same times the vehicles triggered the detectors in the video (assuming the vehicles were not in-queue). Using SCOPE the real-world traffic was not only right-of-way safely yielded, but the traffic flow state time average time in-queue reduced. The final phase of testing will occur when the DOT performs Formal Qualification Testing, which is scheduled for 2013. Upon validation and subsequent release to the open source community SCOPE will provide users the ability to replace the proprietary application software residing in ATC cabinets. Transparency will be provided into another aspect of the traffic control signal thus taking the initiative of ATC one step further.
20

An Assessment Methodology for Emergency Vehicle Traffic Signal Priority Systems

McHale, Gene Michael 27 March 2002 (has links)
Emergency vehicle traffic signal priority systems allow emergency vehicles such as fire and emergency medical vehicles to request and receive a green traffic signal indication when approaching an intersection. Such systems have been around for a number of years, however, there is little understanding of the costs and benefits of such systems once they are deployed. This research develops an improved method to assess the travel time impacts of emergency vehicle traffic signal priority systems for transportation planning analyses. The research investigates the current state of available methodologies used in assessing the costs and benefits of emergency vehicle traffic signal priority systems. The ITS Deployment Analysis System (IDAS) software is identified as a recently developed transportation planning tool with cost and benefit assessment capabilities for emergency vehicle traffic signal priority systems. The IDAS emergency vehicle traffic signal priority methodology is reviewed and recommendations are made to incorporate the estimation of non-emergency vehicle travel time impacts into the current methodology. To develop these improvements, a simulation analysis was performed to model an emergency vehicle traffic signal priority system under a variety of conditions. The simulation analysis was implemented using the CORSIM traffic simulation software as the tool. Results from the simulation analysis were used to make recommendations for enhancements to the IDAS emergency vehicle traffic signal priority methodology. These enhancements include the addition of non-emergency vehicle travel time impacts as a function of traffic volume on the transportation network. These impacts were relatively small and ranged from a 1.1% to 3.3% travel time increase for a one-hour analysis period to a 0.6% to 1.7% travel time increase for a two-hour analysis period. The enhanced methodology and a sample application of the methodology are presented as the results of this research. In addition, future research activities are identified to further improve assessment capabilities for emergency vehicle traffic signal priority systems. / Ph. D.

Page generated in 0.1097 seconds