Spelling suggestions: "subject:"traitement laser"" "subject:"raitement laser""
1 |
Développement des procédés "verts" pour modifier la surface d'ABS avant sa métallisation / Development of Green Processes to modify the ABS Surface before its Metallization / Desarrollo de procesos verdes para modificar la superficie del ABS previo a su metalizacionMagallón Cacho, Lorena 08 December 2009 (has links)
L’ABS est un copolymère de Acrylonitrile-Butadiène-Styrène utilisé industriellement et dont la surface peut être recouverte para un dépôt métallique. Le processus traditionnel pour déposer des films métalliques de manière auto catalytique est connu comme « Electroless ». Cependant, ce processus utilise un mélange sulfochromique dans l’étape de traitement préliminaire de la surface, contenant du Cr (VI), qui est dans la liste des contaminants toxiques qui doivent être substitués. Il est donc primordial de développer de nouveaux procédés de modification de surface de faible impact sur l’environnement. Dans ce travail de thèse, nous avons développé trois nouvelles techniques de modifications de la surface d’ABS. Les deux premières permettent une modification générale de la surface et la troisième une modification spécifique. La première méthode, par voie sèche basée sur l’application en alternance de décharges Corona et radiations ultra-violet, est appelée « Traitement Optophysique ». La deuxième méthode appelée « Traitement Photocatalytique » correspond à l’application des propriétés photocatalytiques de nanoparticules de TiO2 (30nm) en suspension sur la surface du polymère et soumis à une radiation ultra-violet. La troisième méthode appelée « Traitement Optothermique » permettant une modification sélective, est réalisée par ablation thermique laser» à partir d’une sensibilisation de la surface avec des nanoparticules de Palladium et des particules d’Argent. Postérieur à l’étape de traitement « Traitement Optophysique » ou « Traitement Photocatalytique », les substrats ont été pré-métallisés soit par le procédé « Electroless », soit par le procédé de «Dépôt Chimique Dynamique » (DCP). A différence du procédé « Electroless », le procédé « DCP » ne nécessite pas d’une étape antérieure d’activation de sites superficielles avec des ions palladium. Le dépôt métallique final est réalisé par voie électrolytique conventionnelle. Les surfaces prétraitées ont été analysées par des Mesures d’Angle de Contact et les techniques de spectroscopie FT-IR et XPS. La présence de charges superficielles a été évaluée par la Mesure de Potentielle de Surface et de Radiométrie des Photoporteurs. La morphologie des surfaces a été observée et mesurée par les techniques de SEM, AFM et AFAM. Les analyses de rugosité ont été faites par Senseur Mécanique, par Optique Interférentielle et par AFM. L’adhérence des dépôts métalliques a été mesurée par la méthode de la Bande Adhésive sur Coupe Croisée (ASTM D-3359), les essais Pull Off. (ASTM D4541-02) et Peel Off (ASTM B533 A). Les dépôts les plus adhérents ont été obtenus avec un prétraitement « Optophysique » et une pré-métallisation par « DCP ». Les valeurs d’adhérence obtenues sont supérieures à celle des dépôts obtenus para le procédé traditionnelle « Electroless ». Le « Traitement Optothermique » a permis une gravure sélective de la surface de l’ABS en utilisant des lasers de faible puissance. / The ABS is a copolymer formed by Acrylonitrile-Butadiene-Styrene used in industry whose surface can be coated with a metallic deposit. The traditional process for depositing metallic films in an auto-catalytic way is know as “Electroless”, However, this process uses a sulfo-chromic mixture in the preliminary stage of the surface treatment containing Cr (VI) which is a toxic, polluting agent that needs to be replaced. Therefore, it is necessary to develop new surface modification procedures with a lower environmental impact. Three new techniques for ABS surface modification have been developed in this study. The first two allow a general surface modification and the third one a specific surface modification. The first method, using a dry system, is based on alternating a corona discharge with ultraviolet radiation and is called the “Optophysique Treatment”. The second method involves the application of the photocatalytic properties of TiO2 nanoparticles in a suspension on the polymer surface under ultraviolet radiation and is called “Photocatalytic Treatment”. The third method allows a selective modification using thermal laser ablation which is accomplished with the ABS sensibilization with palladium and silver particles and is called “Optothermal Treatment”. After the “Optophysique” or “Photocatalytic” treatments, the substrates were treated either by the ¨Electroless¨ method or by the “Dynamic Chemical Deposit” method. Unlike the “Electroless” method, the “DCP” method does not need a preliminary step to activate the surface sites with palladium ions. The final metallic coating is accomplished by a conventional electrolytic method. The pre-treated surfaces were analyzed by Contact Angle Measurements and with the spectroscopy techniques FT-IR and XPS. The presence of surface changes was evaluated by Potential Measurement and Photocarrier Radiometry. The surface morphology was observed and measured by the following techniques: SEM, AFM, and AFAM. The surface roughness analysis was performed by Mechanical Sensors, Optical Interference and AFM. The adherence of the metallic deposits was measured by the Cross Cut Tape test (ASTM D-3359), and the Pull Off test (ASTM D4541-02) and the Peel Off test (ASTM B533 A). The deposits with greater adhesion were obtained with the “Optophysique” treatment using a pre-coating done by “DCP”. The adherence values obtained were higher than those for deposits obtained by the traditional “Electroless” process. The Optothermal treatment allowed the selective etching on the ABS surface using low power lasers. / El ABS es un copolímero formado por Acrilonitrilo-Butadieno-Estireno utilizado industrialmente, cuya superficie puede ser metalizada mediante un depósito metálico. El proceso tradicional para depositar películas metálicas de manera autocatalítica es conocido como “Electroless”. Sin embargo, este proceso utiliza una mezcla sulfocrómica en la etapa de tratamiento preliminar de la superficie, conteniendo Cr (VI), contaminante tóxico que debe ser sustituido. Por lo tanto, es primordial desarrollar nuevos procedimientos de modificación superficial de bajo impacto ambiental. En este trabajo de tesis, se han desarrollado tres nuevas técnicas de modificación de la superficie del ABS. Los dos primeros permiten una modificación general de la superficie y la tercera una modificación específica. El primer método, realizado por vía seca, consiste en la aplicación en alternancia de descargas corona y radiación ultravioleta, este método es llamado “Tratamiento Optofísico”. El segundo método llamado “Tratamiento Fotocatalítico” corresponde a la aplicación de propiedades fotocatalíticas de nanopartículas de TiO2 (30 nm) en suspensión sobre la superficie del polímero y sometidas a una irradiación ultravioleta. El tercer método es llamado “Tratamiento Optotérmico” permite una modificación selectiva y es realizado por “ablación térmica láser” a partir de una sensibilización de partículas de Paladio y Plata. Posterior al tratamiento “Optofísico” o “Fotocatalítico”, los sustratos fueron pre-metalizados ya sea por el método “Electroless”, o por el método de “Depósito Químico Dinámico” (DCP). A diferencia del método “Electroless”, el método “DCP” no necesita de una etapa anterior a la activación de sitios superficiales con iones de Paladio. El depósito metálico final es realizado por vía electrolítica convencional. Las superficies pre-tratadas fueron analizadas por Medición de Ángulo de Contacto y con las técnicas espectroscópicas FT-IR y XPS. Se evaluó la presencia de cargas superficiales por la medición de potencial y radiometría de fotoportadores. La morfología de las superficies fue observada y medida por las técnicas de SEM, AFM y AFAM. Los análisis de rugosidad se hicieron por Sensores Mecánicos, por Interferencia Óptica y por AFM. La adherencia de los depósitos metálicos fue medida por el método de Cinta de Corte Cruzado (ASTM D-3359), la prueba Pull Off (ASTM D4541-02) y Peel Off (ASTM B533 A). Los depósitos de mayor adherencia fueron obtenidos con el tratamiento “Optofísico” y con un pre-metalizado realizado con “DCP”. Los valores de adherencia obtenidos son superiores al de los depósitos obtenidos por el proceso tradicional “Electroless”. El tratamiento Optotérmico permitió realizar un grabado selectivo sobre la superficie del ABS usando láseres de bajas potencias.
|
2 |
Développement des procédés "verts" pour modifier la surface d'ABS avant sa métallisationMagallon Cacho, Lorena 08 December 2009 (has links) (PDF)
L'ABS est un copolymère de Acrylonitrile-Butadiène-Styrène utilisé industriellement et dont la surface peut être recouverte para un dépôt métallique. Le processus traditionnel pour déposer des films métalliques de manière auto catalytique est connu comme " Electroless ". Cependant, ce processus utilise un mélange sulfochromique dans l'étape de traitement préliminaire de la surface, contenant du Cr (VI), qui est dans la liste des contaminants toxiques qui doivent être substitués. Il est donc primordial de développer de nouveaux procédés de modification de surface de faible impact sur l'environnement. Dans ce travail de thèse, nous avons développé trois nouvelles techniques de modifications de la surface d'ABS. Les deux premières permettent une modification générale de la surface et la troisième une modification spécifique. La première méthode, par voie sèche basée sur l'application en alternance de décharges Corona et radiations ultra-violet, est appelée " Traitement Optophysique ". La deuxième méthode appelée " Traitement Photocatalytique " correspond à l'application des propriétés photocatalytiques de nanoparticules de TiO2 (30nm) en suspension sur la surface du polymère et soumis à une radiation ultra-violet. La troisième méthode appelée " Traitement Optothermique " permettant une modification sélective, est réalisée par ablation thermique laser" à partir d'une sensibilisation de la surface avec des nanoparticules de Palladium et des particules d'Argent. Postérieur à l'étape de traitement " Traitement Optophysique " ou " Traitement Photocatalytique ", les substrats ont été pré-métallisés soit par le procédé " Electroless ", soit par le procédé de "Dépôt Chimique Dynamique " (DCP). A différence du procédé " Electroless ", le procédé " DCP " ne nécessite pas d'une étape antérieure d'activation de sites superficielles avec des ions palladium. Le dépôt métallique final est réalisé par voie électrolytique conventionnelle. Les surfaces prétraitées ont été analysées par des Mesures d'Angle de Contact et les techniques de spectroscopie FT-IR et XPS. La présence de charges superficielles a été évaluée par la Mesure de Potentielle de Surface et de Radiométrie des Photoporteurs. La morphologie des surfaces a été observée et mesurée par les techniques de SEM, AFM et AFAM. Les analyses de rugosité ont été faites par Senseur Mécanique, par Optique Interférentielle et par AFM. L'adhérence des dépôts métalliques a été mesurée par la méthode de la Bande Adhésive sur Coupe Croisée (ASTM D-3359), les essais Pull Off. (ASTM D4541-02) et Peel Off (ASTM B533 A). Les dépôts les plus adhérents ont été obtenus avec un prétraitement " Optophysique " et une pré-métallisation par " DCP ". Les valeurs d'adhérence obtenues sont supérieures à celle des dépôts obtenus para le procédé traditionnelle " Electroless ". Le " Traitement Optothermique " a permis une gravure sélective de la surface de l'ABS en utilisant des lasers de faible puissance.
|
3 |
Modification de la porosité de Ce0,9Gd0,1O1,95 par traitement laser : application pile SOFC monochambre / Densification of cerium gadolinium oxide electrolyte by laser treatment : application to single-chamber solid oxide fuel cellsMariño Blanco, Mariana 19 December 2016 (has links)
Dans les piles à combustible SOFC (Solid Oxide Fuel cell) de type monochambre (SC-SOFC), l’anode et la cathode, séparées par un électrolyte, sont situées dans une même chambre alimentée par un mélange de combustible et d’oxygène. L’électrolyte, n’ayant alors plus le rôle d’étanchéité entre les compartiments anodique et cathodique, peut être mis en forme par sérigraphie. Cependant, il est nécessaire d’avoir une barrière pour éviter la possible diffusion de l’hydrogène produit localement à l’anode vers la cathode, ce qui peut générer une chute de la tension. L’objectif de ce travail de thèse est de créer une barrière de diffusion localisée via la densification de la surface de l'électrolyte par un traitement laser. Le matériau sélectionné pour l’électrolyte est un oxyde mixte Ce0,9Gd0,1O1,95 (CGO) qui est déposé par sérigraphie sur une anode composite NiO-CGO. Deux types de lasers impulsionnels sont utilisés : un laser UV (λ = 248 nm) et un laser IR (λ = 1064 nm). Les caractérisations microstructurales réalisées ont permis de mettre en évidence les effets du traitement laser pour certaines combinaisons fluence – nombre de tirs, montrant un grossissement de grain de l’électrolyte ou bien des surfaces densifiées mais fissurées. Des modifications structurales et chimiques sur la surface ont été évaluées ainsi que la diffusion de gaz au travers des électrolytes modifiés tout comme leur conductivité électrique. Afin de mieux comprendre l'interaction laser-matière, une modélisation thermique a également été mise en œuvre. Finalement, les performances de piles SC-SOFC ont été améliorées pour les dispositifs présentant un grossissement de grain à la surface de l'électrolyte. / In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are both exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte, but in the SC-SOFC configuration it does not play tightness role between compartments. For this reason, a porous electrolyte can be processed by screen printing. However, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode through the electrolyte that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte by a laser treatment. The material chosen for the electrolyte was cerium gadolinium oxide Ce0.9Gd0.1O1.95 (CGO) which is deposited by screen printing on a composite NiO-CGO anode. UV laser and IR laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Structural and chemical modifications on the surface were evaluated as well as the gas diffusion through the electrolytes and their electrical conductivity. In order to understand interaction between the laser and the material, thermal modelling was also developed. Finally, SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface, particularly, the power density has been enhanced by a factor 2.
|
4 |
Formation par traitement de surface par laser d’une couche de chromine sur un alliage base nickel pour limiter le relâchement des cations en circuit primaire. / Laser surface treatment on a nickel based alloy in order to form chromium oxide to reduce cations release in primary circuit. Experimental and numerical study of laser mater interaction.Gouton, Lucille 09 November 2015 (has links)
Le contexte industriel de cette étude est la modification de surface de l’alliage 690(60%Ni, 30%Cr, 10%Fe) utilisé dans la fabrication de tubes de générateurs de vapeur.L’objectif de ce travail de thèse est donc de former, par traitement de fusion par laser nanopulsé, une couche de Cr2O3 étanche au relâchement du nickel. Pour maîtriser la formation decette couche, il est primordial de déterminer les paramètres opératoires influant sur lespropriétés de cette couche. L’objectif scientifique est alors d’expliquer les phénomènesintervenant pendant et après l’impulsion laser au niveau de l’extrême surface.Suite à une étude paramétrique détaillée, un traitement de fusion superficielle par laser nanopulsé a permis d’obtenir un fort rapport Cr/Ni en surface et une couche d’oxyde dense etcontinue. Afin de vérifier l’efficacité du traitement, des coupons traités ont été introduits dansune boucle simulant le milieu primaire.Des expériences et des calculs ont été mis en oeuvre pour tenter d’expliquer l’enrichissementen chrome de la surface à l’aide de ce procédé. Les résultats expliquent l’enrichissement enchrome jusqu’à la solidification du bain liquide en surface qui précède la formation du Cr2O3favorisée par la forte affinité du chrome avec l’oxygène et la grande stabilité de l’oxyde Cr2O3. / Alloy 690 (60%Ni, 30%Cr, 10%Fe) is mainly used in primary circuit pipes fornuclear power plants.The aim of this thesis is to form a Cr2O3 layer, using laser surface melting, with the objective ofcreating a chromium-rich oxide layer. In order to optimize the treatment, it was first important todetermine parameters influence on the layer oxide properties then, with the objective of adeeper understanding of mechanisms involved, to address thermo-physical phenomenaoccurring during and after the laser pulse striking the upper surface.A deep parametric study first enabled to find an optimized laser surface treatment whichproduces chromium enrichment of the upper surface and a dense and continuous oxide layer.This treatment has been applied on samples, set in a primary medium simulation loop.Experiments and calculations were carried out to provide understanding of surface chromiumenrichment by laser process. The results were shown to explain chromium enrichment until meltpool solidification occurred on the upper surface, assumingly just before chromium oxideformation. This was also promoted by a high affinity with oxygen and a higher stability of Cr2O3oxide compared with other potential oxide formation.
|
5 |
Structuration de surfaces au moyen d'un traitement laser femtoseconde : applications à la fonctionnalisation de surface du polypropylène en vue de sa métallisationBelaud, Vanessa 16 January 2014 (has links)
Ce présent travail de thèse porte sur l’étude du potentiel d’un traitement de surface par laser femtoseconde comme étape de substitution aux traitements réalisés actuellement lors de la métallisation de polymère. Pour cela, l’étude des modifications chimiques et morphologiques induites par traitement laser femtoseconde ainsi que leurs influences respectives sur les propriétés d’adhérences et de mouillabilités de la surface polypropylène sont présentées. Une revue bibliographique met en évidence la faisabilité d’une modification contrôlée de la surface du polypropylène après traitement laser femtoseconde. De plus, ces modifications engendrent une évolution démontrée des propriétés de mouillage qui peuvent répondre à certaines demandes industrielles. Après traitement laser femtoseconde, la surface traitée répond de différentes manières à la sollicitation en fonction de ses propriétés intrinsèques. Les expériences d’impacts localisés et de surfaces nous ont conduits à observer trois stades de modifications topographiques pour les conditions étudiées : un phénomène d’incubation, d’accumulation et d’ablation. Ce dernier a fait l’objet d’une étude plus approfondie. De manière générale, on observe deux régimes d’ablation linéaires pour l’ensemble des densités de puissance étudiées lorsque l’on étudie la profondeur d’ablation en fonction du nombre d’impulsion et le volume d’ablation en fonction de la densité de puissance cumulée. Enfin, nous montrons que les liaisons présentes en surface après traitement sont dépendantes de deux facteurs ; la densité de puissance cumulée utilisée et l’environnement de travail. Sachant que les modifications topographiques obtenues sont de types multi-échelles, les résultats ont été analysés sur la base des modèles de Wenzel (1936) et de Cassie-Baxter (1944) relatifs à la théorie du mouillage de surfaces rugueuses. Les résultats expérimentaux et leurs corrélations avec les paramètres de rugosités 3D calculés à différentes échelles ont été traités par une analyse statistique. On observe alors un comportement mixte avec un contact intime de la goutte sur les sommets des aspérités (modèle de Wenzel) et un contact hétérogène (airpolypropylène) à une échelle mésoscopique (état « fakir » décrit par le modèle de Cassie-Baxter). Toutefois, la situation où la goute repose sur le sommet des structures (CB) n’est pas toujours stable. Nous avons étudié la transition de l’état CB à l’état W par des expériences d’évaporation. On observe que cette transition est fortement dépendante de la chimie de surface dont la contribution est prépondérante sur les propriétés d’adhérence métal/PP. En contrôlant cette propriété, il est alors possible de répondre à une problématique industrielle de galvanoplastie (adhérence augmenté par le traitement laser) ou d’électroformage (adhérence faible permettant une réplication de bonne qualité des motifs). / This work presents the potential of a femtosecond laser surface treatment as an alternative step of pretreatments during the metallization of polymer. To do this, the study of chemical and morphological modification induced by femtosecond laser treatment and their respective influences on the properties of adhesion and wettability of polypropylene surface are presented. A literature review highlights the feasibility of a controlled surface modification after femtosecond laser treatment of polypropylene (PP). In addition, it is known that these modifications changes the wetting properties and can be used to meet industrial applications development. After femtosecond laser treatment, the treated surface responds to the solicitation with different morphological comportment according to its intrinsic properties. Experiences of localized impacts and surfaces us to observe three stages of topographic changes to the conditions studied: an incubation phenomenon of accumulation and ablation. The ablation phenomenon is further study. Generally, two linear ablation regime is observed for all power densities examined when considering the depth of ablation as a function of the pulse number and the ablation volume according to the accumulated power density. Finally, we show that the bonds present on the surface after treatment are dependent on two factors: the accumulated power density used and the working environment. Knowing that topographic obtained is multi-scales, the results were analyzed on the basis of models Wenzel (W)(1936) and Cassie–Baxter (CB) (1944) which explain the theory of wetting of rough surfaces. The experimental results and their correlations with 3D roughness parameters calculated at different scales were treated by statistical analysis. We observe a mixed model behavior with intimate contact of the drop on the tops of the asperities (Wenzel model) and a heterogeneous contact (air - PP) in a mesoscopic scale (state " fakir " described by the Cassie -Baxter model). However, this situation where the drop sits on the top of asperities (CB) is not always the most stable. We have studied the transition between the CB state and the W state by evaporation experiments. It is observed that this transition is strongly dependent on the surface chemistry whose contribution is much greater than the adhesion properties metal / PP. If controlling this property, it is possible to obtain two industrial applications: electroplating (increased adhesion by laser treatment) or electroforming (low adherence to replicate the topography).
|
Page generated in 0.0684 seconds