• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'une pile à combustible à oxyde solide de type monochambre fonctionnant sous mélange air/méthane

Rembelski, Damien 18 December 2012 (has links) (PDF)
Cette étude est consacrée au développement d'une pile à combustible à oxyde solide (SOFC) de type monochambre. Contrairement à une pile SOFC conventionnelle, le système monochambre fonctionne dans un mélange de gaz hydrocarbure/air ce qui permet de s'affranchir des contraintes d'étanchéités. Le principe de fonctionnement est basé sur la différence d'activité catalytique entre l'anode et la cathode : l'anode doit être sélective à l'oxydation des hydrocarbures et la cathode à la réduction de l'oxygène. La configuration monochambre implique cependant de nouvelles contraintes concernant notamment la stabilité des matériaux sous mélange hydrocarbure/air à haute température.L'objectif de cette thèse est d'optimiser les performances d'une pile monochambre fonctionnant sous mélange méthane/oxygène et d'améliorer la compréhension de ce système.Les différents éléments d'une pile (électrolyte, cathode, anode) ont été caractérisés sous mélange méthane/oxygène. Quatre matériaux de cathodes (LSM, BSCF, SSC, LSCF) ont été comparés au niveau de leur activité catalytique, stabilité, conductivité électrique et résistance de polarisation. Une étude catalytique de l'anode a été réalisée afin d'identifier les réactions chimiques qui se produisent. Une étude de pile complète en géométrie électrolyte support a permis de sélectionner le matériau de cathode LSCF. Cette étude a également mis en évidence la nécessité de diminuer l'épaisseur de l'électrolyte, la géométrie anode support a donc été étudiée. La première pile anode support a présentée une anode inhomogène et un électrolyte poreux. Des travaux ont été menés afin d'homogénéiser l'anode et de diminuer la porosité de l'électrolyte. En optimisant les conditions de fonctionnement (température et rapport CH4/O2), une densité de puissance maximale de 160 mW.cm-2 a été obtenue.
2

Développement d'une anode cermet Ni-CGO pour une pile à combustible monochambre fonctionnant sous un mélange O2/C3H8

Gadacz, Geoffroy 19 January 2010 (has links) (PDF)
Cette étude est dédiée au développement d'une anode pour une pile à combustible SOFC monochambre. Ce dispositif ne présente pas de séparation physique entre les compartiments anodique et cathodique, contrairement à une pile conventionnelle. Un mélange contenant de l'oxygène et un hydrocarbure est directement injecté sur l'ensemble du dispositif comprenant électrolyte, anode et cathode. La cathode doit être sélective à la réduction de l'oxygène et l'anode à l'oxydation de l'hydrocarbure. Ce dispositif permet donc de s'affranchir des problèmes d'étanchéité des dispositifs conventionnels mais les matériaux d'électrode doivent répondre à des critères catalytiques restrictifs. L'étude a été réalisée avec une anode de type cermet composée de nickel et d'oxyde de cérium gadolinié (CGO). L'hydrocarbure choisi est le propane. L'objectif du travail est de comprendre les phénomènes physico-chimiques se produisant à l'anode afin d'optimiser les conditions de fonctionnement de la pile monochambre, sous mélange O2 / C3H8. Pour cela, les propriétés catalytiques des poudres de nickel et de CGO ont été déterminées en fonction de la température et du rapport O2 / C3H8. Après avoir optimisé les paramètres de préparation des anodes par sérigraphie sur électrolyte support (CGO), des mesures de conductivité électrique par méthode Van der Pauw ont été réalisées également sous différents mélanges O2 / C3H8 en fonction de la température. La confrontation des résultats (propriétés catalytiques et électriques) a permis de mettre en évidence l'existence d'une température limite de fonctionnement, qui dépend du rapport O2 / C3H8. En-dessous de cette température limite, le nickel s'oxyde et l'anode catalyse principalement l'oxydation totale du propane. Au-dessus de cette température limite, le nickel reste sous la forme métallique et catalyse préférentiellement l'oxydation partielle du propane. Ces résultats sont également corroborés à des calculs thermodynamiques, qui mettent en évidence que la réaction préférentielle à basse température est l'oxydation du nickel. Des phénomènes d'oscillations de la conductivité électrique et de la température ont permis de proposer un mécanisme réactionnel basé sur le dépôt et l'oxydation de carbone. Enfin, des dispositifs complets monochambre ont été élaborés en utilisant une cathode BSCF (Ba0,5Sr0.5Co0,8Fe0,2O3) et testés.
3

Développement d'une cellule SOFC de type monochambre pour la conversion en électricité des gaz d'échappement d'un moteur thermique

Briault, Pauline 16 January 2014 (has links) (PDF)
Le projet présenté dans ce mémoire a pour objectif de développer un système de récupération d'énergie des gaz d'échappement d'un véhicule à essence. Constitué de piles à combustible à oxyde solide (SOFC) en configuration monochambre, le dispositif doit convertir l'énergie chimique des gaz imbrûlés en électricité. Son fonctionnement en aval du catalyseur trois voies permettrait de compléter son action dépolluante tout en améliorant l'efficacité énergétique du véhicule. Par opposition aux piles SOFC dites conventionnelles, les piles SOFC monochambres ne nécessitent pas de scellement étanche entre les compartiments et fonctionnent sous un mélange gazeux composé d'hydrocarbures et d'oxygène. L'empilement en stack de plusieurs cellules est simplifié et plus compact, son intégration au cœur du pot d'échappement est donc plus simple. Ce concept a été précédemment étudié dans la littérature et le présent projet a pour but d'améliorer les performances délivrées en optimisant certains paramètres : la géométrie de pile et les matériaux d'électrodes et d'électrolyte. De plus, un mélange gazeux plus représentatif des conditions réelles a été défini et utilisé tout au long du projet. Une étude préliminaire sur les matériaux sous forme de poudre a permis de réaliser un premier choix parmi quatre matériaux de cathode et de définir les conditions de fonctionnement théoriques des cellules. Ensuite, les cellules complètes ont été mises en forme puis étudiées sous mélange gazeux. Une densité maximale de puissance de 25 mW.cm-2 à 550°C pour une cellule Ni-CGO/CGO/LSCF-CGO a ainsi pu être obtenue.
4

Modification de la porosité de Ce0,9Gd0,1O1,95 par traitement laser : application pile SOFC monochambre / Densification of cerium gadolinium oxide electrolyte by laser treatment : application to single-chamber solid oxide fuel cells

Mariño Blanco, Mariana 19 December 2016 (has links)
Dans les piles à combustible SOFC (Solid Oxide Fuel cell) de type monochambre (SC-SOFC), l’anode et la cathode, séparées par un électrolyte, sont situées dans une même chambre alimentée par un mélange de combustible et d’oxygène. L’électrolyte, n’ayant alors plus le rôle d’étanchéité entre les compartiments anodique et cathodique, peut être mis en forme par sérigraphie. Cependant, il est nécessaire d’avoir une barrière pour éviter la possible diffusion de l’hydrogène produit localement à l’anode vers la cathode, ce qui peut générer une chute de la tension. L’objectif de ce travail de thèse est de créer une barrière de diffusion localisée via la densification de la surface de l'électrolyte par un traitement laser. Le matériau sélectionné pour l’électrolyte est un oxyde mixte Ce0,9Gd0,1O1,95 (CGO) qui est déposé par sérigraphie sur une anode composite NiO-CGO. Deux types de lasers impulsionnels sont utilisés : un laser UV (λ = 248 nm) et un laser IR (λ = 1064 nm). Les caractérisations microstructurales réalisées ont permis de mettre en évidence les effets du traitement laser pour certaines combinaisons fluence – nombre de tirs, montrant un grossissement de grain de l’électrolyte ou bien des surfaces densifiées mais fissurées. Des modifications structurales et chimiques sur la surface ont été évaluées ainsi que la diffusion de gaz au travers des électrolytes modifiés tout comme leur conductivité électrique. Afin de mieux comprendre l'interaction laser-matière, une modélisation thermique a également été mise en œuvre. Finalement, les performances de piles SC-SOFC ont été améliorées pour les dispositifs présentant un grossissement de grain à la surface de l'électrolyte. / In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are both exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte, but in the SC-SOFC configuration it does not play tightness role between compartments. For this reason, a porous electrolyte can be processed by screen printing. However, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode through the electrolyte that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte by a laser treatment. The material chosen for the electrolyte was cerium gadolinium oxide Ce0.9Gd0.1O1.95 (CGO) which is deposited by screen printing on a composite NiO-CGO anode. UV laser and IR laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Structural and chemical modifications on the surface were evaluated as well as the gas diffusion through the electrolytes and their electrical conductivity. In order to understand interaction between the laser and the material, thermal modelling was also developed. Finally, SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface, particularly, the power density has been enhanced by a factor 2.
5

Développement de matériaux d'électrodes pour pile à combustible SOFC dans un fonctionnement sous gaz naturel / biogaz. Applications dans le cadre des procédés "pré-reformeur" et mono-chambre"

Gaudillere, Cyril 06 October 2010 (has links) (PDF)
La pile à combustible Solid Oxide Fuel Cell (PAC-SOFC) est un système de production d'énergie " propre " qui permet de convertir de l'hydrogène en énergie électrique en ne rejetant que de l'eau. Une nouvelle configuration appelée " monochambre " semble être particulièrement attrayante compte tenu de ces nombreux avantages sur la configuration bi-chambre classique : simplification de fabrication, baisse de la température de fonctionnement, utilisation d'hydrocarbures comme combustible... La mise en place d'un tel système implique le développement de nouveaux matériaux d'électrodes satisfaisants à de nouveaux critères. L'évaluation en condition réaliste de 7 matériaux de cathode potentiels par diverses caractérisations structurale, texturale et catalytique à mis en évidence la difficulté de développer un matériau possédant toutes les caractéristiques requises. Ainsi, un matériau présentant le meilleur compromis est proposé. Une bibliothèque de 15 catalyseurs supportés (3 métaux et 5 supports différents) a ensuite été développée. Ces catalyseurs, ayant pour but d'être intégrés dans l'anode de la pile pour réaliser le reformage d'hydrocarbures, ont été évalués selon une approche combinatoire en condition réaliste (présence d'hydrocarbure, d'eau, de dioxyde de carbone), ce qui a permis de sélectionner les catalyseurs imprégnés de platine, plus robuste notamment en présence d'eau. Finalement, le couplage de la spectroscopie d'impédance avec la chromatographie en phase gaz a permis d'évaluer le comportement électrochimique d'une nouvelle architecture anodique comportant un catalyseur issu de la bibliothèque. Les tests ont montré que l'ajout d'un catalyseur est bénéfique pour la diminution des résistances de polarisation anodiques par production localisée d'hydrogène à partir d'hydrocarbure.
6

Développement de piles à combustible en technologie planaire couches épaisses. Application à l'étude de dispositifs en configuration monochambre

Udroiu, Sorina-Nicoleta 21 April 2009 (has links) (PDF)
Cette étude est dédiée au développement de piles à combustible de type SOFC en configuration monochambre. L'originalité de ce type de pile SOFC est l'absence de séparation physique entre les compartiments anodique et cathodique. Un mélange d'hydrocarbure et d'air est injecté sur l'ensemble du dispositif comportant l'électrolyte et les deux électrodes de la pile SOFC. Le principe de fonctionnement de ce type de pile repose sur la différence d'activité catalytique entre les deux électrodes. L'anode doit être sélective pour l'oxydation des hydrocarbures et la cathode pour la réduction de l'oxygène. Cette configuration originale permet de s'affranchir des problèmes d'étanchéité des configurations conventionnelles deux atmosphères, ainsi que d'éviter les contraintes sur l'épaisseur de l'électrolyte suivant la disposition des électrodes (coplanaires ou de part et d'autre de l'électrolyte). Cette configuration conduit à des dispositifs simplifiés du point de vue technologique, et donc moins coûteux.<br />Dans cette étude, les électrodes ont été déposées en couches épaisses par la technologie de sérigraphie sur des pastilles support d'électrolyte. Au niveau matériaux, des électrolytes à base de cérine (en particulier GDC et SDC) ont été utilisés afin de diminuer la température de fonctionnement des piles de type SOFC (par rapport à celles avec un électrolyte YSZ). Des électrodes à propriétés catalytiques bien spécifiques vis à vis du mélange gazeux, ont été aussi étudiés : cermets Ni - GDC ou Ni - SDC pour l'anode, cathodes à base de LSM, BSCF ou SSC. Les poudres initiales ainsi que les couches sérigraphiées ont été caractérisées (analyse de phase, microstructure, stabilité chimique, conductivité électrique...) par diverses méthodes physico-chimiques. Différentes piles ont été élaborées et testées dans un réacteur monochambre sous des mélanges air-propane. L'influence des conditions gazeuses (débit, composition) ainsi que de la température de fonctionnement sur les performances des piles a été étudiée. Compte tenu de nos conditions de test, les performances se sont avérées relativement modestes (densité de puissance maximale de l'ordre de 12 mW.cm-2). Néanmoins, cette étude confirme la validité du concept des piles SOFC monochambres, et a aussi permis de développer un savoir-faire au niveau du laboratoire pour poursuivre les études sur cette thématique.
7

Développement de matériaux d'électrodes pour pile à combustible SOFC dans un fonctionnement sous gaz naturel / biogaz. Applications dans le cadre des procédés "pré-reformeur" et mono-chambre" / Development of electrodes materials for SOFC fed by natural gas / biogas. Applications to "pre-reforming" and "single-chamber" concepts

Gaudillere, Cyril 06 October 2010 (has links)
La pile à combustible Solid Oxide Fuel Cell (PAC-SOFC) est un système de production d’énergie « propre » qui permet de convertir de l’hydrogène en énergie électrique en ne rejetant que de l’eau. Une nouvelle configuration appelée « monochambre » semble être particulièrement attrayante compte tenu de ces nombreux avantages sur la configuration bi-chambre classique : simplification de fabrication, baisse de la température de fonctionnement, utilisation d’hydrocarbures comme combustible… La mise en place d’un tel système implique le développement de nouveaux matériaux d’électrodes satisfaisants à de nouveaux critères. L’évaluation en condition réaliste de 7 matériaux de cathode potentiels par diverses caractérisations structurale, texturale et catalytique à mis en évidence la difficulté de développer un matériau possédant toutes les caractéristiques requises. Ainsi, un matériau présentant le meilleur compromis est proposé. Une bibliothèque de 15 catalyseurs supportés (3 métaux et 5 supports différents) a ensuite été développée. Ces catalyseurs, ayant pour but d’être intégrés dans l’anode de la pile pour réaliser le reformage d’hydrocarbures, ont été évalués selon une approche combinatoire en condition réaliste (présence d’hydrocarbure, d’eau, de dioxyde de carbone), ce qui a permis de sélectionner les catalyseurs imprégnés de platine, plus robuste notamment en présence d’eau. Finalement, le couplage de la spectroscopie d’impédance avec la chromatographie en phase gaz a permis d’évaluer le comportement électrochimique d’une nouvelle architecture anodique comportant un catalyseur issu de la bibliothèque. Les tests ont montré que l’ajout d’un catalyseur est bénéfique pour la diminution des résistances de polarisation anodiques par production localisée d’hydrogène à partir d’hydrocarbure. / Solid Oxide Fuel Cell is a device for “clean” electricity production from chemical energy. The new configuration called “single-chamber” seems to be very attractive with several advantages over bi-chamber conventional configuration: easier manufacturing, lowering of working temperature, possible use of hydrocarbons as fuel… Such configuration involves the development of new electrode materials satisfying new requirements. The evaluation of 7 potential cathode materials through several characterizations has shown that a compromise has to be found since one material does not exhibit all the requested features. A library of 15 supported catalysts (3 metals and 5 supports) was developed. These catalysts, aimed at be located inside the anodic cermet, were evaluated through a combinatorial approach in realistic condition (presence of hydrocarbon, water, carbon dioxide). Platinum-based catalysts are found the most robust, especially in presence of water. Finally, innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise a new anodic architecture with an enclosed Pt-based catalyst previously evaluated. Tests revealed the beneficial effect of the catalyst insertion over anodic polarisation resistance by hydrogen production from hydrocarbon.
8

Développement d'une cellule SOFC de type monochambre pour la conversion en électricité des gaz d'échappement d'un moteur thermique / Development of a single chamber SOFC device for electrical energy production from exhaust gases of a thermal engine

Briault, Pauline 16 January 2014 (has links)
Le projet présenté dans ce mémoire a pour objectif de développer un système de récupération d’énergie des gaz d’échappement d’un véhicule à essence. Constitué de piles à combustible à oxyde solide (SOFC) en configuration monochambre, le dispositif doit convertir l’énergie chimique des gaz imbrûlés en électricité. Son fonctionnement en aval du catalyseur trois voies permettrait de compléter son action dépolluante tout en améliorant l’efficacité énergétique du véhicule. Par opposition aux piles SOFC dites conventionnelles, les piles SOFC monochambres ne nécessitent pas de scellement étanche entre les compartiments et fonctionnent sous un mélange gazeux composé d’hydrocarbures et d’oxygène. L’empilement en stack de plusieurs cellules est simplifié et plus compact, son intégration au cœur du pot d’échappement est donc plus simple. Ce concept a été précédemment étudié dans la littérature et le présent projet a pour but d’améliorer les performances délivrées en optimisant certains paramètres : la géométrie de pile et les matériaux d’électrodes et d’électrolyte. De plus, un mélange gazeux plus représentatif des conditions réelles a été défini et utilisé tout au long du projet. Une étude préliminaire sur les matériaux sous forme de poudre a permis de réaliser un premier choix parmi quatre matériaux de cathode et de définir les conditions de fonctionnement théoriques des cellules. Ensuite, les cellules complètes ont été mises en forme puis étudiées sous mélange gazeux. Une densité maximale de puissance de 25 mW.cm-2 à 550°C pour une cellule Ni-CGO/CGO/LSCF-CGO a ainsi pu être obtenue. / This study aims at developing a system able to recover energy from exhaust gases of a thermal engine. Composed of Solid Oxide Fuel Cells (SOFC) in a single chamber configuration, the device has to convert chemical energy of gases into electricity. Embedded in the exhaust line at the exit of the three-way catalyst, the stack of single chamber SOFC will complete the reduction of toxic gases emissions with an improvement of the vehicle energy efficiency.Unlike conventional SOFC, single chamber SOFC do not require any gastight sealing between compartments and work in a mixed atmosphere composed of hydrocarbon and oxygen. Stack assembly is thus simplified and more compact; insertion into the exhaust line is therefore easier. This concept has been previously studied in the literature and this work aims at enhancing performances through the optimisation of some parameters such as cell geometry and cell components materials.Moreover, a more representative gas mixture of actual compositions in the exhaust line has been defined and used all along this project. A preliminary study on the raw materials has allowed to make a first selection among four cathode materials and to define theoretical working conditions of our cells. Afterwards, cells have been elaborated and then studied in the selected gas mixture. A maximum power density of 25 mW.cm-2 has been obtained at 550°C for a Ni-CGO/CGO/LSCF-CGO cell.
9

Développement d’une pile à combustible à oxyde solide de type monochambre fonctionnant sous mélange air/méthane / Development of a single-chamber solid oxide fuel cell working under methane/oxygen mixture

Rembelski, Damien 18 December 2012 (has links)
Cette étude est consacrée au développement d’une pile à combustible à oxyde solide (SOFC) de type monochambre. Contrairement à une pile SOFC conventionnelle, le système monochambre fonctionne dans un mélange de gaz hydrocarbure/air ce qui permet de s’affranchir des contraintes d’étanchéités. Le principe de fonctionnement est basé sur la différence d’activité catalytique entre l’anode et la cathode : l’anode doit être sélective à l’oxydation des hydrocarbures et la cathode à la réduction de l’oxygène. La configuration monochambre implique cependant de nouvelles contraintes concernant notamment la stabilité des matériaux sous mélange hydrocarbure/air à haute température.L’objectif de cette thèse est d’optimiser les performances d’une pile monochambre fonctionnant sous mélange méthane/oxygène et d’améliorer la compréhension de ce système.Les différents éléments d’une pile (électrolyte, cathode, anode) ont été caractérisés sous mélange méthane/oxygène. Quatre matériaux de cathodes (LSM, BSCF, SSC, LSCF) ont été comparés au niveau de leur activité catalytique, stabilité, conductivité électrique et résistance de polarisation. Une étude catalytique de l’anode a été réalisée afin d’identifier les réactions chimiques qui se produisent. Une étude de pile complète en géométrie électrolyte support a permis de sélectionner le matériau de cathode LSCF. Cette étude a également mis en évidence la nécessité de diminuer l’épaisseur de l’électrolyte, la géométrie anode support a donc été étudiée. La première pile anode support a présentée une anode inhomogène et un électrolyte poreux. Des travaux ont été menés afin d’homogénéiser l’anode et de diminuer la porosité de l’électrolyte. En optimisant les conditions de fonctionnement (température et rapport CH4/O2), une densité de puissance maximale de 160 mW.cm-2 a été obtenue. / This study is devoted to the development of a single-chamber solid oxide fuel cell. Contrary to a conventional solid oxide fuel cell, a single chamber fuel cell works under a hydrocarbon/air mixture with no more sealing needed. The working principle of this device is based on the difference of catalytic activity between the anode and the cathode: the anode must be selective to hydrocarbon oxidation and the cathode to oxygen reduction. With single-chamber geometry, chemical stability of materials has to be taken into account under hydrocarbon/air mixture at high temperature.The goal of this work is to optimize the performances of a single-chamber cell working under methane/oxygen mixture and to improve this device comprehension.Each part of the cell (electrolyte, anode, cathode) was characterized under methane/oxygen mixture. Four cathode materials (LSM, BSCF, SSC, LSCF) were compared regarding their catalytic activity, stability, electrical conductivity and polarization resistance. The catalytic activity of the anode was studied in order to identify the chemical reactions happening. A study of electrolyte supported cells showed that LSCF material is the most suitable cathode. Furthermore, this study showed that the electrolyte was too thick; the anode supported configuration was studied. The first anode supported cell showed an inhomogeneous anode and a porous electrolyte. From that, a study of the homogeneity of the anode and the densification of the electrolyte was performed. A maximum power density of 160mW.cm-2 was obtained by optimizing the working conditions of the cells (temperature and CH4/O2 ratio).
10

Développement d'une anode cermet Ni-CGO pour une pile à combustible monochambre fonctionnant sous un mélange O2/C3H8 / Development of a Ni-CGO cermet anode for a single chamber SOFC operating under an O2/C3H8 mixture

Gadacz, Geoffroy 19 January 2010 (has links)
Cette étude est dédiée au développement d’une anode pour une pile à combustible SOFC monochambre. Ce dispositif ne présente pas de séparation physique entre les compartiments anodique et cathodique, contrairement à une pile conventionnelle. Un mélange contenant de l’oxygène et un hydrocarbure est directement injecté sur l’ensemble du dispositif comprenant électrolyte, anode et cathode. La cathode doit être sélective à la réduction de l’oxygène et l’anode à l’oxydation de l’hydrocarbure. Ce dispositif permet donc de s’affranchir des problèmes d’étanchéité des dispositifs conventionnels mais les matériaux d’électrode doivent répondre à des critères catalytiques restrictifs. L’étude a été réalisée avec une anode de type cermet composée de nickel et d’oxyde de cérium gadolinié (CGO). L’hydrocarbure choisi est le propane. L’objectif du travail est de comprendre les phénomènes physico-chimiques se produisant à l’anode afin d’optimiser les conditions de fonctionnement de la pile monochambre, sous mélange O2 / C3H8. Pour cela, les propriétés catalytiques des poudres de nickel et de CGO ont été déterminées en fonction de la température et du rapport O2 / C3H8. Après avoir optimisé les paramètres de préparation des anodes par sérigraphie sur électrolyte support (CGO), des mesures de conductivité électrique par méthode Van der Pauw ont été réalisées également sous différents mélanges O2 / C3H8 en fonction de la température. La confrontation des résultats (propriétés catalytiques et électriques) a permis de mettre en évidence l’existence d’une température limite de fonctionnement, qui dépend du rapport O2 / C3H8. En-dessous de cette température limite, le nickel s’oxyde et l’anode catalyse principalement l’oxydation totale du propane. Au-dessus de cette température limite, le nickel reste sous la forme métallique et catalyse préférentiellement l’oxydation partielle du propane. Ces résultats sont également corroborés à des calculs thermodynamiques, qui mettent en évidence que la réaction préférentielle à basse température est l’oxydation du nickel. Des phénomènes d’oscillations de la conductivité électrique et de la température ont permis de proposer un mécanisme réactionnel basé sur le dépôt et l’oxydation de carbone. Enfin, des dispositifs complets monochambre ont été élaborés en utilisant une cathode BSCF (Ba0,5Sr0.5Co0,8Fe0,2O3) et testés. / This work is devoted to the development of a single chamber SOFC. Unlike a conventional SOFC, this type of fuel cell has no physical separation between the anodic and cathodic compartments. An oxygen and hydrocarbon mixture is injected directly on the overall fuel cell, including the electrolyte, the anode and the cathode. The cathode must have a high selectivity to the oxygen reduction, and the anode to the hydrocarbon oxidation. This device allows to avoid the conventional devices sealing problems, but the electrodes materials must fit with restrictive catalytic criterions. The study has been conducted with a cermet anode type, composed of nickel and gadolinia doped ceria (CGO). The selected hydrocarbon was the propane. The goal of this work is to understand physico-chemical processes taking place at the anode in order to optimize the operating conditions of the fuel cell, in an O2 / C3H8 mixture. The catalytic properties of nickel and CGO powders were determined as a function of temperature and O2 / C3H8 ratio. After optimization of the anode screen-printing conditions preparation on a CGO support, electrical measurements were done using the Van der Pauw method under different O2 / C3H8 mixtures as a function of temperature. The results of catalytic and electrical measurements show a limiting operating temperature, which depends on the O2 / C3H8 ratio. Below this limiting temperature, the nickel is oxidized and principally catalyses the total oxidation of the propane. Above this limiting temperature, nickel remains into its metallic state and preferentially catalyses the partial oxidation of the propane. These results are also corroborated to thermodynamics calculations, which show that at low temperature, the oxidation of nickel is the most favourable reaction. Some oscillations of the conductivity have been observed. Oscillations of electrical conductivity and temperature allowed proposing a reaction mechanism based on carbon deposition and oxidation. Finally, complete single chamber devices have been elaborated using a BSCF (Ba0,5Sr0.5Co0,8Fe0,2O3) cathode and tested.

Page generated in 0.0541 seconds