Spelling suggestions: "subject:"file à combustible SOFC"" "subject:"pile à combustible SOFC""
1 |
Synthèse et mise en forme de nouveaux matériaux de cathode pour piles ITSOFC : réalisation et tests de cellulesLalanne, Cécile 24 October 2005 (has links) (PDF)
Le développement des piles à combustible à oxyde solide SOFC est conditionné par un abaissement de la surtension cathodique mesurée à 600-700°C. Dans cette optique, une sélection de nouveaux matériaux de cathode a été réalisée au laboratoire depuis quelques années. Ainsi, les oxydes sur-stoechiométriques en oxygène de type A2MO4+¤ (structure K2NiF4) possèdent des propriétés électrocatalytiques et de conduction de l'oxygène particulièrement intéressantes. Une étude approfondie a été menée sur les composés Nd2¤xNiO4+¤ (x = 0 et 0,05) : la réduction de l'oxygène a été caractérisée par spectroscopie d'impédance électrochimique et par voltamétrie (cellule en configuration symétrique placée sous air). Les mesures réalisées sous différentes pressions partielles d'oxygène et diverses surtensions cathodiques ont permis d'identifier les diverses contributions du mécanisme de réduction du dioxygène. L'utilisation de poudres de morphologie contrôlée (issues de différentes voies de synthèse) a conduit à réduire fortement les phénomènes de polarisation d'électrode, le transfert ionique à l'interface cathode / électrolyte restant l'étape limitante du processus. Par ailleurs, suite aux résultats particulièrement encourageants obtenus pour les cellules symétriques (faibles résistances spécifiques et surtensions cathodiques minimisées), les premiers tests en configuration de pile complète ont pu être réalisés. Après une optimisation des paramètres de mise en forme, i.e. sélection de la méthode de dépôt et du cycle thermique de frittage adapté, des densités de courant de l'ordre de 1,3 A/cm2 ont été mesurées à 0,7 V pour une température de fonctionnement de 800°C.
|
2 |
Synthèse et caractérisation d'une nouvelle architecture de cathode pour pile à combustible fonctionnant aux températures intermédiaires (ITSFOC)Hierso, Jessie 26 November 2010 (has links) (PDF)
Cette thèse présente deux axes de recherches pour améliorer les performances de la cathode d'une pile SOFC. 1) Des films minces mésostructurés de CGO ont été réalisés par le procédé sol-gel, incluant l'utilisation de copolymères à bloc, associé à du dip-coating. Ce type de film, de porosité contrôlée, a ensuite été intégré à l'interface cathodique d'un dispositif complet. L'efficacité de ces films a été testée en pile complète et se traduit par une diminution de la chute ohmique dans la pile, améliorant ainsi ses performances. 2) Une nouvelle architecture de cathode composite LSC-CGO a ensuite été étudiée pour le fonctionnement d'une ITSOC à 600°C. Nous avons choisi d'élaborer ce composite par infiltration de nanoparticules de LSC dans une couche poreuse de CGO. Une matrice de CGO, présentant des mésopores et des macropores, a été réalisée par infiltration d'un sol de précurseurs de CGO dans une couche poreuse formée de billes de PMMA. La matrice à porosité hiérarchique a été obtenue après calcination du film hybride : les macropores sont issus de la décomposition thermique de grosses billes de PMMA et les mésopores sont obtenus par décomposition soit de plus petites billes de PMMA soit d'un copolymère initialement présent dans le sol de CGO. La réalisation de nanoparticules de LSC en milieu polyol a également été étudiée : des nanoparticules ont été obtenues après un traitement thermique à haute température et une étude complémentaire de la synthèse à basse température de nanoparticules de plus petites tailles est nécessaire pour réaliser le composite. Ce travail présente l'intérêt de la synthèse par infiltration pour la réalisation de cathodes de SOFC à porosité contrôlée
|
3 |
Développement d'une cellule SOFC de type monochambre pour la conversion en électricité des gaz d'échappement d'un moteur thermiqueBriault, Pauline 16 January 2014 (has links) (PDF)
Le projet présenté dans ce mémoire a pour objectif de développer un système de récupération d'énergie des gaz d'échappement d'un véhicule à essence. Constitué de piles à combustible à oxyde solide (SOFC) en configuration monochambre, le dispositif doit convertir l'énergie chimique des gaz imbrûlés en électricité. Son fonctionnement en aval du catalyseur trois voies permettrait de compléter son action dépolluante tout en améliorant l'efficacité énergétique du véhicule. Par opposition aux piles SOFC dites conventionnelles, les piles SOFC monochambres ne nécessitent pas de scellement étanche entre les compartiments et fonctionnent sous un mélange gazeux composé d'hydrocarbures et d'oxygène. L'empilement en stack de plusieurs cellules est simplifié et plus compact, son intégration au cœur du pot d'échappement est donc plus simple. Ce concept a été précédemment étudié dans la littérature et le présent projet a pour but d'améliorer les performances délivrées en optimisant certains paramètres : la géométrie de pile et les matériaux d'électrodes et d'électrolyte. De plus, un mélange gazeux plus représentatif des conditions réelles a été défini et utilisé tout au long du projet. Une étude préliminaire sur les matériaux sous forme de poudre a permis de réaliser un premier choix parmi quatre matériaux de cathode et de définir les conditions de fonctionnement théoriques des cellules. Ensuite, les cellules complètes ont été mises en forme puis étudiées sous mélange gazeux. Une densité maximale de puissance de 25 mW.cm-2 à 550°C pour une cellule Ni-CGO/CGO/LSCF-CGO a ainsi pu être obtenue.
|
4 |
Elaboration de couches de protection pour interconnecteurs de piles à combustible à oxyde solideSaoutieff, Elise 12 January 2010 (has links) (PDF)
Les alliages ferritiques à base de chrome sont utilisés en tant qu'interconnecteur de pile à combustible à oxyde solide (SOFC). Ces alliages forment à haute température, sous conditions oxydantes, une double couche d'oxydes de MnCr2O4| Cr2O3. L'évaporation des espèces volatiles de chrome provenant de cette double couche d'oxydes peut entraîner l'empoisonnement de la cathode et par conséquent conduire à une dégradation des performances de la cellule SOFC. Une solution pour limiter les pertes de performances du système est d'appliquer une couche barrière contre le chrome sur l'interconnecteur. Le travail de thèse s'intéresse au développement de ces couches de protection pour un alliage ferritique commercial d'ArcelorMittal K41X. Dans un premier temps, une étude sur le comportement en corrosion de l'alliage a été réalisée. Ensuite, l'électrodéposition, de par sa simplicité et sa rapidité de mise en œuvre a permis l'identification des compositions de revêtements les plus prometteurs. Les couches formulées sont des oxydes spinelle à base de métaux de transition (Co, Mn, Cu, Ni, Fe). Enfin, les différentes compositions de couches retenues ont été déposées par in-situ et par ex-situ. En in-situ, les dépôts sont réalisés sous forme métallique, par électrodéposition (dépôt multicouches) et par pulvérisation cathodique (dépôt d'alliage). Un traitement thermique est nécessaire afin d'oxyder le dépôt métallique et de former l'oxyde spinelle jouant le rôle de couche barrière du chrome. En ex-situ la couche de protection est directement déposée sur le substrat par projection atmosphérique plasma. Les différentes couches ont été caractérisées par des analyses MEB, EDX et DRX ainsi que par des mesures de résistances spécifiques de surface ASR. Nous montrons que les couches de protection étudiées réduisent l'ASR (<50 mΩ.cm2) et inhibent la diffusion du chrome. Le travail conclut sur une étude comparative des avantages et des inconvénients des trois procédés industriels utilisés pour le dépôt d'une couche de protection.
|
5 |
Développement de matériaux d'électrodes pour pile à combustible SOFC dans un fonctionnement sous gaz naturel / biogaz. Applications dans le cadre des procédés "pré-reformeur" et mono-chambre"Gaudillere, Cyril 06 October 2010 (has links) (PDF)
La pile à combustible Solid Oxide Fuel Cell (PAC-SOFC) est un système de production d'énergie " propre " qui permet de convertir de l'hydrogène en énergie électrique en ne rejetant que de l'eau. Une nouvelle configuration appelée " monochambre " semble être particulièrement attrayante compte tenu de ces nombreux avantages sur la configuration bi-chambre classique : simplification de fabrication, baisse de la température de fonctionnement, utilisation d'hydrocarbures comme combustible... La mise en place d'un tel système implique le développement de nouveaux matériaux d'électrodes satisfaisants à de nouveaux critères. L'évaluation en condition réaliste de 7 matériaux de cathode potentiels par diverses caractérisations structurale, texturale et catalytique à mis en évidence la difficulté de développer un matériau possédant toutes les caractéristiques requises. Ainsi, un matériau présentant le meilleur compromis est proposé. Une bibliothèque de 15 catalyseurs supportés (3 métaux et 5 supports différents) a ensuite été développée. Ces catalyseurs, ayant pour but d'être intégrés dans l'anode de la pile pour réaliser le reformage d'hydrocarbures, ont été évalués selon une approche combinatoire en condition réaliste (présence d'hydrocarbure, d'eau, de dioxyde de carbone), ce qui a permis de sélectionner les catalyseurs imprégnés de platine, plus robuste notamment en présence d'eau. Finalement, le couplage de la spectroscopie d'impédance avec la chromatographie en phase gaz a permis d'évaluer le comportement électrochimique d'une nouvelle architecture anodique comportant un catalyseur issu de la bibliothèque. Les tests ont montré que l'ajout d'un catalyseur est bénéfique pour la diminution des résistances de polarisation anodiques par production localisée d'hydrogène à partir d'hydrocarbure.
|
6 |
Développement de matériaux d'électrodes pour pile à combustible SOFC dans un fonctionnement sous gaz naturel / biogaz. Applications dans le cadre des procédés "pré-reformeur" et mono-chambre" / Development of electrodes materials for SOFC fed by natural gas / biogas. Applications to "pre-reforming" and "single-chamber" conceptsGaudillere, Cyril 06 October 2010 (has links)
La pile à combustible Solid Oxide Fuel Cell (PAC-SOFC) est un système de production d’énergie « propre » qui permet de convertir de l’hydrogène en énergie électrique en ne rejetant que de l’eau. Une nouvelle configuration appelée « monochambre » semble être particulièrement attrayante compte tenu de ces nombreux avantages sur la configuration bi-chambre classique : simplification de fabrication, baisse de la température de fonctionnement, utilisation d’hydrocarbures comme combustible… La mise en place d’un tel système implique le développement de nouveaux matériaux d’électrodes satisfaisants à de nouveaux critères. L’évaluation en condition réaliste de 7 matériaux de cathode potentiels par diverses caractérisations structurale, texturale et catalytique à mis en évidence la difficulté de développer un matériau possédant toutes les caractéristiques requises. Ainsi, un matériau présentant le meilleur compromis est proposé. Une bibliothèque de 15 catalyseurs supportés (3 métaux et 5 supports différents) a ensuite été développée. Ces catalyseurs, ayant pour but d’être intégrés dans l’anode de la pile pour réaliser le reformage d’hydrocarbures, ont été évalués selon une approche combinatoire en condition réaliste (présence d’hydrocarbure, d’eau, de dioxyde de carbone), ce qui a permis de sélectionner les catalyseurs imprégnés de platine, plus robuste notamment en présence d’eau. Finalement, le couplage de la spectroscopie d’impédance avec la chromatographie en phase gaz a permis d’évaluer le comportement électrochimique d’une nouvelle architecture anodique comportant un catalyseur issu de la bibliothèque. Les tests ont montré que l’ajout d’un catalyseur est bénéfique pour la diminution des résistances de polarisation anodiques par production localisée d’hydrogène à partir d’hydrocarbure. / Solid Oxide Fuel Cell is a device for “clean” electricity production from chemical energy. The new configuration called “single-chamber” seems to be very attractive with several advantages over bi-chamber conventional configuration: easier manufacturing, lowering of working temperature, possible use of hydrocarbons as fuel… Such configuration involves the development of new electrode materials satisfying new requirements. The evaluation of 7 potential cathode materials through several characterizations has shown that a compromise has to be found since one material does not exhibit all the requested features. A library of 15 supported catalysts (3 metals and 5 supports) was developed. These catalysts, aimed at be located inside the anodic cermet, were evaluated through a combinatorial approach in realistic condition (presence of hydrocarbon, water, carbon dioxide). Platinum-based catalysts are found the most robust, especially in presence of water. Finally, innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise a new anodic architecture with an enclosed Pt-based catalyst previously evaluated. Tests revealed the beneficial effect of the catalyst insertion over anodic polarisation resistance by hydrogen production from hydrocarbon.
|
7 |
Développement d'une cellule SOFC de type monochambre pour la conversion en électricité des gaz d'échappement d'un moteur thermique / Development of a single chamber SOFC device for electrical energy production from exhaust gases of a thermal engineBriault, Pauline 16 January 2014 (has links)
Le projet présenté dans ce mémoire a pour objectif de développer un système de récupération d’énergie des gaz d’échappement d’un véhicule à essence. Constitué de piles à combustible à oxyde solide (SOFC) en configuration monochambre, le dispositif doit convertir l’énergie chimique des gaz imbrûlés en électricité. Son fonctionnement en aval du catalyseur trois voies permettrait de compléter son action dépolluante tout en améliorant l’efficacité énergétique du véhicule. Par opposition aux piles SOFC dites conventionnelles, les piles SOFC monochambres ne nécessitent pas de scellement étanche entre les compartiments et fonctionnent sous un mélange gazeux composé d’hydrocarbures et d’oxygène. L’empilement en stack de plusieurs cellules est simplifié et plus compact, son intégration au cœur du pot d’échappement est donc plus simple. Ce concept a été précédemment étudié dans la littérature et le présent projet a pour but d’améliorer les performances délivrées en optimisant certains paramètres : la géométrie de pile et les matériaux d’électrodes et d’électrolyte. De plus, un mélange gazeux plus représentatif des conditions réelles a été défini et utilisé tout au long du projet. Une étude préliminaire sur les matériaux sous forme de poudre a permis de réaliser un premier choix parmi quatre matériaux de cathode et de définir les conditions de fonctionnement théoriques des cellules. Ensuite, les cellules complètes ont été mises en forme puis étudiées sous mélange gazeux. Une densité maximale de puissance de 25 mW.cm-2 à 550°C pour une cellule Ni-CGO/CGO/LSCF-CGO a ainsi pu être obtenue. / This study aims at developing a system able to recover energy from exhaust gases of a thermal engine. Composed of Solid Oxide Fuel Cells (SOFC) in a single chamber configuration, the device has to convert chemical energy of gases into electricity. Embedded in the exhaust line at the exit of the three-way catalyst, the stack of single chamber SOFC will complete the reduction of toxic gases emissions with an improvement of the vehicle energy efficiency.Unlike conventional SOFC, single chamber SOFC do not require any gastight sealing between compartments and work in a mixed atmosphere composed of hydrocarbon and oxygen. Stack assembly is thus simplified and more compact; insertion into the exhaust line is therefore easier. This concept has been previously studied in the literature and this work aims at enhancing performances through the optimisation of some parameters such as cell geometry and cell components materials.Moreover, a more representative gas mixture of actual compositions in the exhaust line has been defined and used all along this project. A preliminary study on the raw materials has allowed to make a first selection among four cathode materials and to define theoretical working conditions of our cells. Afterwards, cells have been elaborated and then studied in the selected gas mixture. A maximum power density of 25 mW.cm-2 has been obtained at 550°C for a Ni-CGO/CGO/LSCF-CGO cell.
|
8 |
Elaboration, mise en forme et caractérisations de cellules électrochimiques convertissant l'énergie et fonctionnant à haute température (SOFC) / Elaboration, shaping and characterization of electrochemical cells converting energy and working at high temperature (SOFC)Al-Kattan, Dalya 25 March 2016 (has links)
Les travaux présentés s'intéressent à la réalisation de piles SOFC de 3éme génération. La problématique essentielle de cette configuration concerne le processus de mise en forme de la cellule devant permettre l'obtention d'un électrolyte dense (haute température) associé à un métal poreux (basse température). Afin de répondre à cette problématique, nous proposons une approche innovante consistant à élaborer et mettre en forme, à haute température, un empilement de précurseurs oxydes réduits dans une deuxième étape à température modérée pour générer les parties métalliques. La voie sol-gel dérivée du procédé Pechini réputée pour permettre l'obtention à moindre coût d'échantillons homogènes de composition complexe et à microstructure contrôlée a permis d'obtenir les précurseurs oxydes des constituants de la cellule. Leur mise en forme a été réalisée par frittage flash, technique sélectionnée pour la rapidité de traitement permettant de contrôler la densification, préserver la microstructure et limiter les réactions interfaciales lors de l'assemblage de matériaux différents. Les paramètres de densification puis les conditions de réduction ont été optimisés pour chaque précurseur avant d'être transférés pour la réalisation d'une demi-cellule. Le départ de l'oxygène se traduit par une augmentation de la porosité sans coalescence des parties métallique ni décollement au niveau des interfaces entre constituants. Ainsi, les résultats présentés valident l'approche proposée montrant le bénéfice attendu de l'utilisation de précurseurs oxydes permettant la dissociation de l'étape mise en forme et densification de l'électrolyte de celle de l'obtention du métal poreux. Après réalisation des tests électrochimiques sur la demi-cellule, la réalisation d'une cellule complète pourra être proposée avant d'envisager un transfert d'échelle, rendu possible par l'utilisation de procédés facilement industrialisables. / The works presented concern in the realization of a third generation of SOFC cell. The main problem is the shaping process of the cell which must allows obtaining a dense (high temperature) electrolyte associated with a porous metal (low temperature). In order to solve this issue, we propose an innovative approach consisting in developing and shaping, at high temperature, a stack of oxide precursors which will be reduced in a second step at moderate temperature to generate the metal parts. The sol-gel route derived from the Pechini process, known to allow obtaining at low cost homogeneous samples of complex composition and controlled microstructure, was used to obtain the oxide precursors of the constituents of the cell. Their shaping was carried out by flash sintering, a technique selected for the speed of treatment allowing to control the densification, to preserve the microstructure and to limit the interfacial reactions during the assembly of different materials. The densification parameters and then the reduction conditions were optimized for each precursor before being transferred for the production of a half-cell. The departure of the oxygen results in an increase in the porosity without coalescence of the metal parts or detachment at the interfaces between constituents. Thus, the results presented validate the proposed approach showing the expected benefit of the use of oxide precursors allowing the dissociation of the shaping and densification step of the electrolyte from that of the obtaining of the porous metal. After carrying out the electrochemical tests on the half-cell, the full cell will be produced the upscaling, facilitated by the use of adequate chemical processes will be considered.
|
9 |
Conception d’observateurs pour la commande d’un système pile à combustible embarqué en vue d’optimiser performances et durabilité / Observer design for control of an on-board fuel cell system to optimize performance and durabilityPiffard, Maxime 01 December 2017 (has links)
Les piles à combustibles sont considérées comme une énergie d’avenir, notamment grâce à leur caractère non polluant à l’usage. Cependant, le déploiement de ces solutions à grande échelle est encore conditionné par l’amélioration de leurs performances et surtout de leur durabilité afin de garantir une industrialisation à faible coût. L’application de la pile à combustible au domaine des transports impose en plus un fonctionnement à puissance variable, ce qui complique l’amélioration des performances et de la durabilité. L’approche retenue pour ces travaux consiste en la conception d’une loi de gestion du système qui génère les conditions opératoires optimales à appliquer au stack (pressions, température, courant, stoechiométries) en fonction de la demande en puissance, de l’état de santé de la pile (perte de surface active) et du taux d’humidité actuel. L’optimalité est entendue au sens de l’augmentation du rendement système et de la diminution des dégradations du platine et de la membrane. Cette loi se base sur des modèles de dégradations et de performances d’un système pile à combustible. Cette loi de gestion requiert pour fonctionner les données de l’état de santé de la pile et du taux d’humidité. L’évaluation de l’état de santé de la pile fait déjà l’objet de nombreux travaux de diagnostic. En revanche, le taux d’humidité doit être estimé par un observateur d’état car les capteurs d’humidité ne sont pas fiables pour une application transport. Pour cela, un observateur d’état a été développé pour estimer les humidités relatives dans les canaux du stack et aussi le chargement en eau de la membrane, la quantité d’hydrogène à l’anode ainsi que la saturation d’azote à l’anode. Cette dernière donnée permet de proposer une stratégie de purge pour une architecture dead-end basée sur la saturation d’azote, qui limite les pertes en hydrogène et réduit les dégradations liées à cette architecture. / Fuel cells are considered as a promising source of energy for the future, thanks to their non-polluting aspect. However, the deployment of these solutions on a large scale is still conditioned by the improvement of their performance and especially of their durability in order to guarantee a low cost industrialization. The transport application also imposes a variable power demand, which complicates the improvement of performance and durability. The approach adopted for this work consists of the design of a system management law that generates the optimal operating conditions to be applied to the stack (pressures, temperature, current, stoichiometries) as a function of the power demand, the state of health (active surface loss) and current humidity. Optimality is understood in the sense of increasing system efficiency and decreasing the degradation of the membrane and the platinum dissolution. This law is based on degradation and performance models of a fuel cell system. This management law requires in real time the data of the state of health of the fuel cell and the humidity rate. The assessment of the state of health is already the subject of many diagnostic work. On the other hand, the humidity rate must be estimated by a state observer because the humidity sensors are not reliable for a transport application. Therefore, a state observer was developed to estimate the relative humidities in the stack channels and also the membrane water content, the hydrogen at the anode as well as the nitrogen saturation at the anode. This last data makes it possible to propose a purge strategy for a dead-end architecture, based on nitrogen saturation, which limits the losses in hydrogen and reduces the damage associated with this architecture.
|
Page generated in 0.0962 seconds