Spelling suggestions: "subject:"transcription activator"" "subject:"ranscription activator""
1 |
Engineered DNA-Binding Proteins for Targeted Genome Editing and Gene RegulationMaeder, Morgan Lee 07 June 2014 (has links)
Engineered DNA-binding proteins enable targeted manipulation of the genome. Zinc fingers are the most well characterized DNA-binding domain and for many years research has focused on understanding and manipulating the sequence-specificities of these proteins. Recently, major advances in the ability to engineer zinc finger proteins, as well as the discovery of a new class of DNA-binding domains - transcription activator-like effectors (TALEs), have made it possible to rapidly and reliably engineer proteins targeted to any sequence of interest. With this capability, focus has shifted to exploring the applications of this powerful technology. In this dissertation I explore three important applications of engineered DNA-binding proteins.
|
2 |
Functional analysis of bacterial TAL effectors and the targeted susceptibility genes in plantsZhang, Junli January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Frank White / The genus Xanthomonas consists of bacterial species causing economically important plant diseases in major crops. In a wide variety of Xanthamonas species, the transcription activator-like (TAL) effectors (proteins) are synthesized and secreted into host cells, whereby they enter the plant nucleus. TAL effectors bind specific host gene promoters, inducing the expression of the targeted genes, which in some cases leads to either resistance or an enhanced state of disease susceptibility. The TAL effectors in individual Xanthomanas species and their targets in host plants have been characterized in relatively few cases. The premier example is the induction of any one member of a clade of sugar transporter genes in rice by TAL effectors of the bacterial blight pathogen X. oryzae pv. oryzae, where induction of the susceptibility (S) genes was shown to be required for the disease process. TAL effector genes are present in a wide variety of Xanthomonas species other than X. oryzae pv. oryzae. My dissertation focuses on the characterization of the TAL effectors in the citrus bacterial canker (CBC) and soybean bacterial pustule pathosystems. In CBC, CsLOB1 was identified as the S gene targeted by multiple major TAL effectors from CBC causal strains. Furthermore, another two members in family of citrus LBD family, although not identified as targets in the field, can serve as S genes in CBC. Initial analysis of bacterial pustule disease of soybean indicates that the TAL effector TAL2 of X. axonopodis pv. glycines is a virulence effector and associated with the expression of two candidate S genes, which encode a member of the ZF-HD transcription factors and a member of aluminum activated malate transporter family. These studies will enhance our understanding of plant-bacterial interactions and evolution of disease susceptibility, and also inform development of durable disease resistant crop varieties.
|
3 |
In silico engineering and optimization of Transcription Activator-Like Effectors and their derivatives for improved DNA binding predictions.Piatek, Marek J. 12 1900 (has links)
Transcription Activator-Like Effectors (TALEs) can be used as adaptable DNAbinding
modules to create site-specific chimeric nucleases or synthetic
transcriptional regulators. The central repeat domain mediates specific DNA binding
via hypervariable repeat di-residues (RVDs). This DNA-Binding Domain can be
engineered to bind preferentially to any user-selected DNA sequence if engineered
appropriately. Therefore, TALEs and their derivatives have become indispensable
molecular tools in site-specific manipulation of genes and genomes.
This thesis revolves around two problems: in silico design and improved binding
site prediction of TALEs. In the first part, a study is shown where TALEs are
successfully designed in silico and validated in laboratory to yield the anticipated
effects on selected genes. Software is developed to accompany the process of
designing and prediction of binding sites. I expanded the functionality of the
software to be used as a more generic set of tools for the design, target and offtarget
searching.
Part two contributes a method and associated toolkit developed to allow users to
design in silico optimized synthetic TALEs with user-defined specificities for various
experimental purposes. This method is based on a mutual relationship of three consecutive tandem repeats in the DNA-binding domain. This approach revealed
positional and compositional bias behind the binding of TALEs to DNA.
In conclusion, I developed methods, approaches, and software to enhance the
functionality of synthetic TALEs, which should improve understanding of TALEs
biology and will further advance genome-engineering applications in various
organisms and cell types.
|
4 |
Mechanistic Studies of the Roles of the Transcriptional Activator ExsA and Anti-activator Protein ExsD in the Regulation of the Type Three Secretion System in Pseudomonas aeruginosaShrestha, Manisha 19 June 2018 (has links)
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that is a substantial threat, particularly in hospital settings, causing severe infections in immunocompromised patients that may lead to death. Pseudomonas aeruginosa harbors a multitude of virulence factors that enable this pathogen to establish both acute and chronic infections in humans. A key determinant of acute infections is a hollow molecular needle structure used for injecting toxins into a host cell, called the type three secretion system (T3SS). The secretion machinery itself is highly complex and, together with the specific secreted factors, requires expression of more than 30 genes. Due to the high energy cost of its synthesis to the organism this system is highly regulated to finely time gene expression to coincide with host contact. ExsA, a member of the AraC-type transcription factor family, is the main transcriptional activator of all the genes necessary for expression of the T3SS. Members of the AraC family are characterized by the presence of two helix-turn-helix (HTH) motifs, which bind to the promoter DNA and activate transcription. ExsA uses its HTH containing C-terminal domain (CTD) to regulate gene expression from 10 different promoters. The N-terminal domain (NTD) of ExsA mediates dimerization and regulation of ExsA-activity. While most AraC-type activators are regulated by a small molecule ligands, ExsA is regulated by another protein, ExsD. As part of a four-protein signaling cascade, ExsD interacts directly with ExsA to prevent transcription of T3SS-associated genes under non-inducing conditions prior to host cell contact. The entire regulatory cascade includes of two additional proteins, ExsC and ExsE. ExsA, ExsC, ExsD, and ExsE follow a partner-switching mechanism to link expression of the secretion system with host cell contact. Our laboratory is working to understand this unique signaling mechanism by determining the molecular basis for the regulation of this important virulence factor. Previous studies in the laboratory have solved the structures of ExsE, ExsC and ExsD, and shed light on how these proteins interact and compete for overlapping binding sites. However, it is still unclear as to how the ExsA and ExsD interact and thus how regulation is mediated at the molecular level.
In the presented study, we sought to map the molecular interface between ExsA and ExsD. First, the crystal structure of ExsA-NTD is presented wherein the dimerization interface of the protein was identified. Two of the well-studied AraC-type proteins, AraC and ToxT crystal structures have been solved by others in the presence of their respective ligands. Residues that were involved in ligand binding in AraC and ToxT were aligned with the residues in ExsA and analyzed for interaction with ExsD. However, this canonical binding pocket appeared to be not involved in the interaction between ExsA and ExsD. Structure directed site-specific mutagenesis was carried out to construct many different variants of ExsD and ExsA. Thus constructed variants were purified and analyzed in a functional assay. Using this approach, we were able to identify regions on ExsD and ExsA that are crucial for the interaction and for the regulation of ExsA-dependent transcription. It turns out that backbone interactions between the amino-terminal residues of ExsD and the beta-barrel region of the ExsA-NTD are pivotal. This result explains how ExsA and ExsC compete for ExsD binding, since both target the same regions on ExsD. / PHD / Pseudomonas aeruginosa is an opportunistic pathogen that is notorious for causing severe infections in immunocompromised individuals. Acute Pseudomonas aeruginosa infections are characterized by immediate adverse effects. An initial acute infection may become chronic, leading to long-term morbidity and mortality in affected individuals. During the initial stages of infection P. aeruginosa uses the type three secretion system, a syringe-like structure, to puncture the host cell and inject potent toxins. The activation of the genes required for forming this structure is tightly controlled by an activator protein, ExsA. When P.aeruginosa is not invading a host, ExsA is inhibited by another protein called ExsD, to prevent the needless production of the secretion apparatus. The presented work explores the mechanism of how ExsD achieves this inhibition of ExsA. This information is of potential biomedical interest because a clear understanding of the molecular basis for the interaction could inform the development of a small-molecule mimic of ExsD to be used in therapy. In Chapter 2 we report the structure of the domain of ExsA that is known to bind ExsD. Also, in this chapter and more so in Chapter 3, we performed a detailed analysis of potential interacting regions and ultimately succeeded in identifying key interacting regions in both ExsA and ExsD.
|
5 |
Transport cellobiose médié par PTS et son effet sur l'expression du gène de virulence chez Listeria monocytogenes / PTS-mediated cellobiose transport and its effect on virulence gene expression in Listeria monocytogenesCao, Minh Thanh Nguyen 17 December 2015 (has links)
Listeria monocytogenes transporte le cellobiose principalement via le PTS (PEP:carbohydrate phosphotransferase system). La croissance sur cellobiose induit l'expression des opérons celBCA1, celBA2 ainsi que du gène lmrg_01989, qui codent respectivement le composant soluble EIIACel1, le transporteur EIICCel1, le composant soluble EIIBCel1, les protéines EIIBCel2 et EIIACel2, et une seconde EIICCel. La croissance sur glucose réprime fortement l'expression de ces gènes. La délétion de celC1 codant l'EIICCel1 ou des deux gènes, celA1 et celA2, ralentit considérablement la consommation cellobiose. L'expression des trois unités de transcription induite par le cellobiose dépend de CelR. CelR, qui code un régulateur transcriptionnel LevR- like, est situé en aval de l'opéron bicistronique celBA2. CelR est activé par phosphorylation par EI et HPr de l'His550. En revanche, la phosphorylation de l'His823, catalysée par P~EIIBCel1 et P~EIIBCel2, inhibe l'activité de CelR. Le remplacement de l'His823 par une Ala empêchant cette phosphorylation ou la délétion des deux gènes codants les EIIAsCel ou EIIBsCel entraîne l'expression constitutive des trois unités de transcription contrôlées par CelR. Comme le glucose, le cellobiose inhibe fortement l'activité de PrfA, l'activateur des gènes de virulence. Nous avons donc cherché à tester si l'un des composants PTSCel pouvait être impliqué dans la répression de gènes de virulence. Les mutants consommant faiblement le cellobiose, présentaient une levée de la répression des gènes de virulence par le cellobiose, alors que le glucose et les autres sucres-PTS les réprimaient toujours. De manière surprenante, la délétion du gène monocistronique lmrg_00557, qui code un autre composant EIIBCel du PTS, induisait la levée de la répression des gènes de virulence médiée par toutes les sources de carbone mais n'avait aucun effet sur la consommation de glucose ou de cellobiose. Ce gène lmrg_00557 a été appelé vgiB (virulence gene inhibitor B) et la protéine correspondante, qui semble jouer un rôle majeur dans la régulation de l'activité de PrfA, EIIBVir. Cette protéine est phosphorylée par le PEP et les composants PTS EI, HPr et EIIACel2 sur le résidu cystéine-8. La complémentation du mutant ΔvgiB avec l'allèle sauvage, mais également avec l'allèle Cys8Ala, restaurait le mécanisme général de répression des gènes de virulence par les sucres, suggérant ainsi que la forme non phosphorylée de EIIBVir inhibe l'activité de PrfA. / Listeria monocytogenes transports cellobiose mainly via a PEP:carbohydrate phosphotranseferase system (PTS). Growth on cellobiose induces the expression of the celBCA1 and celBA2 operons as well as lmrG01989, which encode the soluble EIIA Cel1 and EIIB Cel1 components, the transporter EIIC Cel1 , the EIIA Cel2 and EIIB Cel2 proteins, and a second EIIC Cel , respectively. Growth on lucose strongly repressed the expression of these genes. Deletion of the EIIC Cel1 –encoding celC1 or of both, celA1 and celA2, significantly slowed cellobiose consumption. The bicistronic operon celBA2 is located downstream from celR, which codes for a LevR-like transcription activator. Expression of the three cellobiose-induced transcription units depends on CelR. The gene encoding CelR is located upstream from the bicistronic operon celBA2. CelR itself is activated via phosphorylation by EI and HPr at His550. In contrast, phosphorylation at His823, which is catalyzed by both, P~EIIB Cel1 and P~EIIB Cel2 , inhibits CelR activity. Preventing this phosphorylation by replacing His823 with Ala or deleting the two EIIA Cel – or EIIB Cel -encoding genes caused constitutive expression of all three CelR-controlled transcription units. Similar to glucose, cellobiose strongly inhibits the activity of the virulence gene activator PrfA. We therefore tested whether one of the PTS Cel components might be involved in virulence gene repression. Mutants, that exhibit slow cellobiose consumption, were relieved from cellobiose-mediated virulence gene repression, whereas glucose and other PTS-sugars still repressed them. Strikingly, deletion of the presumed monocistronic lmrg_00557, which codes for another EIIB Cel -like PTS component, caused a general relief from carbon source-mediated virulence gene repression, but had no effect on cellobiose or glucose consumption. The gene lmrg_00557 was named vgiB (virulence gene inhibitor B) and the encoded protein, which seems to play a major role in PrfA regulation, was called EIIB Vir . It becomes phosphorylated by PEP and the PTS components enzyme I, HPr and EIIA Cel2 at cysteine-8. Complementation of the ΔvgiB mutant with wild-type vgiB, but also with the Cys8Ala allele restored general virulence gene repression, thus suggesting that it is the unphosphorylated form of EIIB Vir , which inhibits the activity of PrfA.
|
Page generated in 0.1076 seconds