Spelling suggestions: "subject:"transcriptional regulation"" "subject:"ranscriptional regulation""
141 |
Characterization of the BTB/POZ protein ZBTB4 as a transcriptional regulator of cyclin D1Doherty, Patrick W. 10 1900 (has links)
<p>The POZ-ZF transcription factor ZBTB4 was initially identified due to its sequence homology to the dual-specificity DNA-binding transcription factor Kaiso. Subsequent characterization of ZBTB4 revealed that it is also a dual-specificity DNA-binding protein; it recognizes a specific oligonucleotide sequence C<sup>T</sup>/<sub>C</sub>GCCATC, coined the <strong>Z</strong>BTB<strong>4</strong> <strong>B</strong>inding <strong>S</strong>equence (Z4BS) as well as methylated CpG-dinucleotides. Interestingly, ZBTB4 also binds to the highly similar consensus <strong>K</strong>aiso <strong>B</strong>inding <strong>S</strong>ite (KBS) <em>in vitro</em>.</p> <p>ZBTB4 is misexpressed in cancer, and follows a stage-specific pattern of expression in breast carcinoma tissues; low ZBTB4 levels are found in late stages while high ZBTB4 expression is detected in early stages of disease progression. Ongoing studies have begun to elucidate the molecular interactions that mediate ZBTB4’s apparent tumour suppressor role in tumourigenesis, however no study has investigated the nature of ZBTB4’s ability to interact with both the Z4BS and the KBS <em>in vivo</em>, and how this may expand ZBTB4’s repertoire of potential target genes.</p> <p>Recently Kaiso has been characterized as a transcriptional repressor of the cell cycle regulatory gene <em>cyclin D1</em>, and thus we used <em>cyclin D1 </em>as a model to investigate the nature of ZBTB4’s interaction with the KBS <em>in vivo</em>. The <em>cyclin D1</em> minimal promoter contains two partial Z4BS at the same location as the KBS sites and we found that ZBTB4 binds to the +69 Z4BS/KBS site, but not to the -1067 site. Because the +69 Z4BS/KBS is immediately flanked by a CpG dinucleotide, this interaction may be a methylation-dependent interaction. To determine the consequence of this interaction, we conducted minimal promoter luciferase assays, and observed that ZBTB4 mediates an activation of the -1748-CD1 minimal promoter activity.</p> / Master of Science (MSc)
|
142 |
TRANSCRIPTIONAL REGULATION OF OSTEOACTIVIN EXPRESSION BY BMP-2 IN OSTEOBLASTSSingh, Maneet January 2011 (has links)
Osteoactivin (OA) is a glycoprotein required for the differentiation of osteoblasts. In osteoblasts, Bone Morphogenetic Protein-2 (BMP-2) activated Smad1 signaling enhances OA expression. However, the transcriptional regulation of OA gene expression by BMP-2 is still unknown. The aim of this study was to characterize BMP-2-induced transcription factors that regulate OA gene expression during osteoblast differentiation. The stimulatory effects of BMP-2 on OA transcription were established by cloning the proximal 0.96kb of rat OA promoter region in a luciferase reporter vector in various osteogenic cell types. Further, by deletion and mutagenesis analyses of the cloned OA promoter, key binding sites for osteogenic transcription factors namely, Runx2, Smad1, Smad4 and homeodomain proteins (Dlx3, Dlx5 and Msx2) were identified and characterized. Utilizing specific siRNAs to knock down Runx2, Smad1, Smad4, Dlx3, Dlx5 or Msx2 proteins in osteoblasts, we found that Runx2, Smad1, Smad4, Dlx3 and Dlx5 proteins up-regulate OA transcription, whereas, Msx2 down-regulated OA gene expression. These specific effects of transcription factors on OA promoter regulation were confirmed by forced expression of transcription factors. Most notably, BMP-2-stimulated cooperative and synergistic interactions between Runx2-Smad1 proteins and Dlx3-Dlx5 proteins that up-regulate OA promoter activity. Electrophoretic mobility shift and supershift assays demonstrated that BMP-2 stimulates interactions between Runx2, Smad1 and Smad4 and homeodomain transcription factors with the OA promoter regions flanking the -585 Runx2 binding site, the -248 Smad binding site and the region between the -852 and the -843 homeodomain binding sites relative to transcription start site. The OA promoter region was occupied by Runx2 and also Dlx3 transcription factors during proliferation stages of osteoblast differentiation. As the osteoblasts progress from proliferation to matrix maturation stages of differentiation, the OA promoter was predominantly occupied by Runx2 and to a lesser extent Dlx5 in response to BMP-2. Finally, during matrix mineralization stages of osteoblast differentiation, BMP-2-induced a robust recruitment of Dlx5, Smad1, Dlx3 and Msx2 proteins with simultaneous dissociation of Runx2 from the OA promoter region. In conclusion, the BMP-2-induced osteogenic transcription factors Runx2, Smad1, Smad4, Dlx3, Dlx5 and Msx2 provide key molecular switches that regulate OA transcription during osteoblast differentiation. / Cell Biology
|
143 |
Growth Hormone and Nutritional Regulation of Insulin-Like Growth Factor-I Gene ExpressionWang, Ying 30 December 2005 (has links)
The objectives of this research were to characterize insulin-like growth factor-I (IGF-I) gene expression in cattle, to determine how IGF-I gene expression is affected by nutritional intake and growth hormone (GH) in cattle, and to identify the regulatory DNA region that mediates GH stimulation of IGF-I gene expression. It was found that transcription of the IGF-I gene in cattle was initiated from both exon 1 and exon 2, generating class 1 and class 2 IGF-I mRNA, respectively. Both classes of IGF-I mRNA appeared to be ubiquitously expressed, with the highest level in liver and with class 1 being more abundant than class 2 in all tissues examined. Class 1 IGF-I mRNA may be also translated more efficiently than class 2 IGF-I mRNA. Liver expression of IGF-I mRNA was decreased (P < 0.01) by food deprivation in cattle, and this decrease was due to an equivalent decrease in both classes of IGF-I mRNA. Liver expression of IGF-I mRNA was increased (P < 0.01) by GH, and this increase resulted mainly from increased expression of class 2 IGF-I mRNA. Using cotransfection analyses, a ~700 bp chromosomal region ~75 kb 5' from the first exon of the human IGF-I gene was found to enhance reporter gene expression in the presence of constitutively active signal transducer and activator of transcription 5 (STAT5) proteins, transcription factors that are known to be essential for GH-increased IGF-I gene expression. This 700 bp DNA region contains two STAT5-binding sites that appear to be conserved in mammals including cattle. Electrophoretic mobility shift assays and cotransfection analyses confirmed their ability to bind to STAT5 proteins and to mediate STAT5 activation of gene expression, respectively. Chromatin immunoprecipitation assays indicated that overexpressed constitutively active STAT5b protein bound to the chromosomal region containing these two STAT5-binding sites in Hep G2 cells, and this binding was associated with increased expression of IGF-I mRNA. These two STAT5-binding sites were also able to mediate GH-induced STAT5 activation of gene expression in reconstituted GH-responsive cells. These results together suggest that the distal DNA region that contains two STAT5-binding sites may mediate GH-induced STAT5 activation of IGF-I gene transcription in vivo. / Ph. D.
|
144 |
Stochastic Modeling of Gene Expression and Post-transcriptional RegulationJia, Tao 19 August 2011 (has links)
Stochasticity is a ubiquitous feature of cellular processes such as gene expression that can give rise to phenotypic differences for genetically identical cells. Understanding how the underlying biochemical reactions give rise to variations in mRNA/protein levels is thus of fundamental importance to diverse cellular processes. Recent technological developments have enabled single-cell measurements of cellular macromolecules which can shed new light on processes underlying gene expression. Correspondingly, there is a need for the development of theoretical tools to quantitatively model stochastic gene expression and its consequences for cellular processes.
In this dissertation, we address this need by developing general stochastic models of gene expression. By mapping the system to models analyzed in queueing theory, we derive analytical expressions for the noise in steady-state protein distributions. Furthermore, given that the underlying processes are intrinsically stochastic, cellular regulation must be designed to control the`noise' in order to adapt and respond to changing environments. Another focus of this dissertation is to develop and analyze stochastic models of post-transcription regulation. The analytical solutions of the models proposed provide insight into the effects of different mechanisms of regulation and the role of small
RNAs in fine-tunning the noise in gene expression. The results derived can serve as building blocks for future studies focusing on regulation of stochastic gene expression. / Ph. D.
|
145 |
Transcriptional Regulation of the Glycogen Phosphorylase-2 Gene in <I>Dictyostelium discoideum</i>Warner, Nikita 25 September 1999 (has links)
The expression of the <I>glycogen phosphorylase- 2</I> gene (<I>gp2</I>) is initiated during early development and regulated by the extracellular morphogens cAMP and Differentiation Inducing Factor (DIF-1) [1-3]. Glycogen phosphorylase- 2 catalyzes the breakdown of glycogen reserves in developing cells to generate glucose precursors required for the synthesis of the end products of differentiation [4-6]. Thus, the expression of <I>gp2</I> is a significant event for cellular differentiation. The sequence of the <I>gp2</I> promoter, like other <I>Dictyostelium</I> promoters, has an AT-rich bias (88%) [7]. Previous deletional analyses of the promoter provided a map of the regions that contained transcriptional regulatory elements. The regions thus identified contained either "TAAAAATGGA" or C-rich repeat sequences [2]. These regions were dissected further by site-directed mutagenesis (SDM) to better define the physical boundaries of the regulatory elements. It was shown that the mutation of either one of the C-rich repeats resulted in a dramatic drop of about 95% in reporter gene levels. These data strongly suggested that both the C-rich repeats of <I>gp2</I> functioned as transcriptional regulatory elements. I have identified and purified a factor called TF2 that demonstrates a high specificity for a C-rich transcriptional regulatory element, the 5' C box. TF2 was first detected with electrophoretic mobility shift assays of DEAE chromatographic fractions of cell-free extracts. The specificity of TF2 for the 5' C box was tested by competition analysis using six other oligonucleotides. Purification of TF2 was achieved by ion-exchange chromatography, DNA affinity chromatography, gel filtration chromatography, and preparative SDS-PAGE. SDS-PAGE analysis indicated an apparent subunit molecular weight of 28 kDa. The apparent molecular weight of the native protein as estimated by gel filtration was about 53 kDa. This suggested that TF2 binds gp2 as a homodimer. A cDNA clone of the tf2 gene was provided by the Japanese <I>Dictyostelium</I> cDNA project. This allowed me to synthesize probes for Southern and Northern blot analyses. Southern blot analysis indicated that there is only one form of the <I>tf2</I> gene. Northern analysis showed little or no expression of <I>tf2</I> in undifferentiated cells. During development <I>tf2</I> expression increases up to a maximum at 8 h, then decreases in later stages. Attempts to disrupt the gene suggest that <I>tf2</I> mutation may be lethal. / Ph. D.
|
146 |
Addressing alterations of post-transcriptional regulation in cancer and rare diseases by computational approachesDestefanis, Eliana 22 January 2024 (has links)
Gene expression regulation encompasses a wide range of mechanisms that govern cellular processes. Among these, post-transcriptional regulation, including translation control, plays a pivotal role in ensuring precise protein synthesis, timing, and quantity. Perturbations of mechanisms such as RNA modifications, and interactions between RNA-binding proteins (RBPs) and specific RNA motifs, can lead to dysregulation of essential cellular processes. These alterations contribute to the development of various disorders, including cancer, neurodegenerative diseases, and metabolic disorders. Many publicly available datasets and studies offer opportunities to investigate the link between alterations in these mechanisms and disease manifestations. However, the limited availability of datasets for certain conditions or notable inconsistencies among reported associations prevent complete understanding of the underlying processes. Therefore, extending the investigations to encompass a diverse range of genes and/or diseases will enhance our comprehension of these intricate regulatory and disease mechanisms, aiding in the identification of potential therapeutic targets and innovative interventions to mitigate pathological conditions.
In particular, we focused on three separate aspects involved in gene expression regulation: RNA modifications, RBPs interactions with RNA secondary structures, and the Kozak consensus sequence as a translational modulator. Each part uncovers essential mechanisms that govern post-transcriptional control of gene expression, shedding light on their roles in cellular processes and disease contexts.
At first, we performed a comprehensive exploration of 15 RBPs involved in the regulation of the N6-methyladenosine (m6A) methylation. Leveraging data from The Cancer Genome Atlas (TCGA), we conducted a pan-cancer analysis across 31 tumor types to uncover the distribution of alterations of these factors, and we developed a user-friendly web application to enable users to conduct similar analyses. Additionally, we performed a parallel analysis focused on neuroblastoma, using data from publicly available and in-house datasets. These investigations unveil the potential impact of a subset of m6A factors on cancer development and progression. While in the first case, VIRMA and YTHDF reader proteins, emerged as the most frequently altered genes with significant pan-cancer prognostic implications, in the context of neuroblastoma, the writer METTL14 and the reader ALKBH5, showed the most prominent roles.
Subsequently, our focus shifted to a distinct subset of RBPs capable of interacting with RNA secondary structures, particularly with RNA G-quadruplexes (RG4s). We established a comprehensive database cataloging RBPs with potential RG4-binding capabilities. This resource represents a valuable tool for researchers aiming to explore the intricate interplays between RBPs and RG4s, and their putative implications in diverse biological processes and diseases. Finally, attention was directed to the Kozak sequence, a pivotal determinant of the regulation of translation initiation. Exploiting the power of base editors, we developed a method to optimize translation initiation by modifying the Kozak sequence. This strategy offers promise in addressing haploinsufficiency-related disorders, where enhancing the functional protein is essential.
Overall, these findings present opportunities for the identification of potential therapeutic targets and precision medicine strategies to alleviate a spectrum of pathological conditions, thus fostering advancements in the field of molecular biology and disease management.
|
147 |
Les protéines Staufen et leurs rôles dans la régulation posttranscriptionnelle de l’expression des gènes, la réponse aux dommages à l’ADN et le cycle cellulaireTrépanier, Véronique 03 1900 (has links)
Les différents mécanismes de régulation posttranscriptionnelle de l’expression des
gènes sont de plus en plus reconnus comme des processus essentiels dans divers phénomènes
physiologiques importants, comme la prolifération cellulaire et la réponse aux dommages à
l’ADN. Deux des protéines impliquées dans ce type de régulation sont Staufen1 (Stau1) et
Staufen2 (Stau2). Elles sont des protéines de liaison à l’ARN double brin qui contribuent au
transport de l’ARN messager (ARNm), au contrôle de la traduction, à l’épissage alternatif et
sont responsables de la dégradation de certains ARNm spécifiques. Les protéines Staufen
peuvent en effet s’associer à des ARNm bien précis, d’autant plus que, majoritairement, Stau1
et Stau2 ne se retrouvent pas en complexe avec les mêmes cibles. De nombreuses évidences
récentes montrent l’implication de divers mécanismes de régulation posttranscriptionnelle
dans la réponse aux dommages à l’ADN, plusieurs protéines de liaison à l’ARN y participant
d’ailleurs. De façon importante, cette réponse dicte un ou plusieurs destin(s) à la cellule qui
doit réagir à la suite de dommages à l’intégrité de son ADN: réparation de l’ADN, arrêt de la
prolifération cellulaire, apoptose. Nous avons donc fait l’hypothèse que l’expression de Stau1
et/ou de Stau2 pourrait être affectée en réponse à un stress génotoxique, ce qui pourrait avoir
comme conséquence de moduler l’expression et/ou la stabilité de leurs ARNm cibles. De
même, notre laboratoire a récemment observé que l’expression de Stau1 varie pendant le cycle
cellulaire, celle-ci étant plus élevée jusqu’au début de la mitose (prométaphase), puis elle
diminue alors que les cellules complètent leur division. Par conséquent, nous avons fait
l’hypothèse que Stau1 pourrait lier des ARNm de façon différentielle dans des cellules
bloquées en prométaphase et dans des cellules asynchrones.
D’un côté, en employant la camptothécine (CPT), une drogue causant des dommages à
l’ADN, pour traiter des cellules de la lignée de cancer colorectal HCT116, nous avons observé
que seule l’expression de Stau2 est réduite de façon considérable, tant au niveau de la protéine
que de l’ARNm. L’utilisation d’autres agents cytotoxiques a permis de confirmer cette
observation initiale. De plus, nous avons constaté que l’expression de Stau2 est touchée même
dans des conditions n’engendrant pas une réponse apoptotique, ce qui suggère que cette déplétion de Stau2 est possiblement importante pour la mise en place d’une réponse
appropriée aux dommages à l’ADN. D’ailleurs, la surexpression de Stau2 conjointement avec
le traitement à la CPT entraîne un retard dans l’induction de l’apoptose dans les cellules
HCT116. Nous avons aussi montré que la diminution de l’expression de Stau2 est due à une
régulation de sa transcription en réponse au stress génotoxique, ce pourquoi une région
minimale du promoteur putatif de Stau2 est nécessaire. Également, nous avons identifié que le
facteur de transcription E2F1, couramment impliqué dans la réponse aux dommages à l’ADN,
peut contrôler l’expression de Stau2. Ainsi, E2F1 permet une augmentation de l’expression de
Stau2 dans des cellules non traitées, mais cette hausse est abolie dans des cellules traitées à la
CPT, ce qui suggère que la CPT pourrait agir en inhibant l’activation transcriptionnelle de
Stau2 par E2F1. Enfin, nous avons observé que certains ARNm associés à Stau2, et codant
pour des protéines impliquées dans la réponse aux dommages à l’ADN et l’apoptose, sont
exprimés différemment dans des cellules traitées à la CPT et des cellules non traitées.
D’un autre côté, nous avons identifié les ARNm associés à Stau1 lors de la
prométaphase, alors que l’expression de Stau1 est à son niveau le plus élevé pendant le cycle
cellulaire, grâce à une étude à grande échelle de micropuces d’ADN dans des cellules
HEK293T. Nous avons par la suite confirmé l’association entre Stau1 et certains ARNm
d’intérêts, donc codant pour des protéines impliquées dans la régulation de la prolifération
cellulaire et/ou le déroulement de la mitose. Une comparaison de la liaison de ces ARNm à
Stau1 dans des cellules bloquées en prométaphase par rapport à des cellules asynchrones nous
a permis de constater une association préférentielle dans les cellules en prométaphase. Ceci
suggère une augmentation potentielle de la régulation de ces ARNm par Stau1 à ce moment du
cycle cellulaire.
Les données présentées dans cette thèse indiquent vraisemblablement que la régulation
posttranscriptionnelle de l’expression génique contrôlée par les protéines Staufen se fait en
partie grâce à la modulation de l’expression de Stau1 et de Stau2 en fonction des conditions
cellulaires. Nous envisageons alors que cette variation de l’expression des protéines Staufen
ait des conséquences sur des sous-ensembles d’ARNm auxquels elles sont liées et que de cette façon, elles jouent un rôle pour réguler des processus physiologiques essentiels comme la
réponse aux dommages à l’ADN et la progression dans le cycle cellulaire. / The various mecanisms of post-transcriptional regulation of gene expression are more
and more recognized as essential processes in diverse important physiological phenomenons,
like cell proliferation and the DNA damage response (DDR). Two of the proteins implicated
in this type of regulation are Staufen1 (Stau1) and Staufen2 (Stau2). They are double-stranded
RNA binding proteins contributing to messenger RNA (mRNA) transport, translation control,
alternative splicing and are responsible for the degradation of some specific mRNAs. The
Staufen proteins are indeed able to associate with particular mRNAs. Interestingly, Stau1 and
Stau2 predominantly form complexes with different targets. Recent evidences show the
implication of various post-transcriptional regulation mecanisms in the DDR, moreover
several RNA binding proteins are involved. Importantly, this response dictates one or several
cell fates following damage to the integrity of the cell’s DNA: DNA repair, cell proliferation
arrest, apoptosis. We hypothesized that Stau1 and/or Stau2 expression could be affected in
response to genotoxic stress, which could consequently modulate the expression and/or the
stability of their mRNA targets. Also, our laboratory has recently observed that Stau1
expression varies during the cell cycle. It is elevated up to the beginning of mitosis
(prometaphase) and it decreases as cells complete their division. We therefore hypothesized
that Stau1 could differentially bind mRNAs in cells blocked in prometaphasis and in
asynchronous cells.
On the one hand, by using camptothecin (CPT), a DNA damaging agent, to treat cells
from the colorectal cancer cell line HCT116, we observed that only the expression of Stau2 is
considerably reduced, both at the level of the protein and that of the mRNA. The use of other
cytotoxic agents allowed us to confirm this initial observation. We also noted that Stau2
expression is down-regulated even in conditions that do not induce apoptosis, suggesting that
the decrease in Stau2 expression may be required for a proper DDR. Indeed, Stau2 overexpression
together with the CPT treatment causes a delay in apoptosis induction in HCT116
cells. We also showed that Stau2 down-regulation is due to the regulation of its transcription
in response to the genotoxic stress, which necessitates a minimal region in Stau2’s putative promoter. Besides, we identified the E2F1 transcription factor, commonly implicated in the
DDR, as a regulator of Stau2 expression. E2F1 thus stimulates an increase in Stau2 expression
in non-treated cells, but this up-regulation is abolished in CPT-treated cells, which suggests
that CPT could act by inhibiting Stau2 transcriptional activation by E2F1. Finally, we
observed that some Stau2-associated mRNAs, which code for proteins implicated in the DDR
and apoptosis, are differentially expressed in CPT-treated cells compared to non-treated cells.
On the other hand, we identified Stau1-associated mRNAs during prometaphase, when
Stau1 expression is at its highest level in the cell cycle, by performing a large-scale study
using DNA microarrays in HEK293T cells. We subsequently confirmed the association
between Stau1 and some mRNAs of interest, mainly coding for proteins involved in the
regulation of cell proliferation and/or mitosis progression. A comparison of the association
between Stau1 and these mRNAs in prometaphase-blocked cells with that in asynchronous
cells allowed us to notice a preferential association in prometaphase-blocked cells. This
suggests a potential increase of the regulation of these mRNAs by Stau1 at that point of the
cell cycle.
The data presented in this thesis indicate that in all likelihood the post-transcriptional
regulation of gene expression controlled by the Staufen proteins happens in part thanks to the
modulation of Stau1 and Stau2 expression according to the cellular conditions. We then
contemplate that this fluctuation in Staufen proteins expression has consequences on mRNA
subsets with which they associate, and that this may mean they have an important role to play
in regulating essential physiological processes like DDR and cell cycle progression.
|
148 |
Transcriptional regulation in Aspergillus nidulans during nitrogen sufficiencyDownes, Damien J. January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Richard B. Todd / Fungi can be found living in a range of environments, including soil and the ocean, and as pathogens of plants and animals. The ability of fungi to adapt to diverse and changing environments is dependent on their ability to sense and respond to an array of signals, including the presence or absence of nitrogen nutrients. Fungi can utilize a diverse array of nitrogen nutrients and do so in a regulated and preferential manner. When preferred nitrogen nutrients such as ammonium and glutamine are present (nitrogen sufficiency), genes required for the utilization of alternative nitrogen sources are not expressed. In the absence of a preferred nitrogen source (nitrogen limitation) the genes for utilization of alternative nitrogen sources are transcriptionally derepressed and can be induced by the presence of a particular nitrogen nutrient, such as nitrate or proline. In the absence of any nitrogen nutrient (nitrogen starvation) the expression of some genes is further elevated. In filamentous fungi the expression of genes required for the utilization of nitrogen nutrients is coordinated by the orthologs of the conserved Aspergillus nidulans GATA transcription factor AreA, which activates transcription of nitrogen utilization genes. AreA activity is controlled by autogenous transcriptional activation, mRNA transcript stability, regulated nucleo-cytoplasmic distribution, and interactions with NmrA, AreB and TamA. The combined effect of these regulatory mechanisms generally results in AreA being inactive during nitrogen sufficiency and active during nitrogen limitation and nitrogen starvation. However, during nitrogen sufficiency AreA remains active at the promoters of some genes, including gdhA, which encodes the key nitrogen assimilation enzyme NADP-dependent glutamate dehydrogenase. In this work we have used both classical genetics and next generation sequencing approaches to examine regulated gene expression and how AreA activity is modulated, primarily during nitrogen sufficiency. We have studied regulation of gdhA to characterize how AreA evades nitrogen metabolite repression. We identify leucine biosynthesis as being a key regulatory signal involved in gdhA expression and characterize the genes required for leucine biosynthesis. We also show that TamA regulates the gdhA promoter by direct DNA binding, which requires interaction with AreA. We have also characterized repression of AreA to identify a potential mode of NmrA corepressor action. Finally, we have characterized the AreA nuclear export signal and explored mechanisms that control regulated nuclear export of AreA.
|
149 |
Computational Inference of Genome-Wide Protein-DNA Interactions Using High-Throughput Genomic DataZhong, Jianling January 2015 (has links)
<p>Transcriptional regulation has been studied intensively in recent decades. One important aspect of this regulation is the interaction between regulatory proteins, such as transcription factors (TF) and nucleosomes, and the genome. Different high-throughput techniques have been invented to map these interactions genome-wide, including ChIP-based methods (ChIP-chip, ChIP-seq, etc.), nuclease digestion methods (DNase-seq, MNase-seq, etc.), and others. However, a single experimental technique often only provides partial and noisy information about the whole picture of protein-DNA interactions. Therefore, the overarching goal of this dissertation is to provide computational developments for jointly modeling different experimental datasets to achieve a holistic inference on the protein-DNA interaction landscape. </p><p>We first present a computational framework that can incorporate the protein binding information in MNase-seq data into a thermodynamic model of protein-DNA interaction. We use a correlation-based objective function to model the MNase-seq data and a Markov chain Monte Carlo method to maximize the function. Our results show that the inferred protein-DNA interaction landscape is concordant with the MNase-seq data and provides a mechanistic explanation for the experimentally collected MNase-seq fragments. Our framework is flexible and can easily incorporate other data sources. To demonstrate this flexibility, we use prior distributions to integrate experimentally measured protein concentrations. </p><p>We also study the ability of DNase-seq data to position nucleosomes. Traditionally, DNase-seq has only been widely used to identify DNase hypersensitive sites, which tend to be open chromatin regulatory regions devoid of nucleosomes. We reveal for the first time that DNase-seq datasets also contain substantial information about nucleosome translational positioning, and that existing DNase-seq data can be used to infer nucleosome positions with high accuracy. We develop a Bayes-factor-based nucleosome scoring method to position nucleosomes using DNase-seq data. Our approach utilizes several effective strategies to extract nucleosome positioning signals from the noisy DNase-seq data, including jointly modeling data points across the nucleosome body and explicitly modeling the quadratic and oscillatory DNase I digestion pattern on nucleosomes. We show that our DNase-seq-based nucleosome map is highly consistent with previous high-resolution maps. We also show that the oscillatory DNase I digestion pattern is useful in revealing the nucleosome rotational context around TF binding sites. </p><p>Finally, we present a state-space model (SSM) for jointly modeling different kinds of genomic data to provide an accurate view of the protein-DNA interaction landscape. We also provide an efficient expectation-maximization algorithm to learn model parameters from data. We first show in simulation studies that the SSM can effectively recover underlying true protein binding configurations. We then apply the SSM to model real genomic data (both DNase-seq and MNase-seq data). Through incrementally increasing the types of genomic data in the SSM, we show that different data types can contribute complementary information for the inference of protein binding landscape and that the most accurate inference comes from modeling all available datasets. </p><p>This dissertation provides a foundation for future research by taking a step toward the genome-wide inference of protein-DNA interaction landscape through data integration.</p> / Dissertation
|
150 |
Studying the posttranslational modifications of transcription factor Ikaros and their role in its functionApostolov, Apostol 28 September 2012 (has links) (PDF)
The main topic of my PhD studies was to investigate the role of sumoylation in the function of Ikaros transcription factor, that regulates the lymphocyte differentiation and function. Sumoylation is a posttranslational modification that can change the properties and regulate the function of a given protein. Up to now, one study addressed the question of how sumoylationmodulates Ikaros function. It shows that Ikaros is sumoylated in total primary thymocytes, and that this dynamic event modulates Ikaros' repressive function. It also describes two consensus sumoylation sites on Ikaros (K58 and K240), the sumoylation of which leads to loss of Ikaros repressive function in ectopic reporter gene assays. The final conclusion of the study is that sumoylation does not alter the nuclear localization of Ikaros but acts as a mechanism disrupting its participation in both histone deacetylase (HDAC) dependent and independent repression. My work shows the presence of additional sumoylation site on Ikaros and demonstrates that sumoylation does not significantly alter its interaction with the nucleosome remodelling and histone deacetylase (NURD) complex in T-cell lines. The functional analysis of sumo-deficientmutants indicates a complex role of this modification in regulating Ikaros' transcriptional properties. The identification of this new sumoylation site contributes to a better understanding of Ikaros' dual repressive - activating function and suggests the existence of conditional Ikaros' interacting partners. Moreover, the different Ikaros splicing isoforms would have differentsumoylation profiles, which would complete the knowledge of their functional diversity.
|
Page generated in 0.1379 seconds