Spelling suggestions: "subject:"transcriptomics"" "subject:"transcriptomic""
41 |
<b>TRANSCRIPTIONAL IMPACTS OF BIOTIC INTERACTIONS ON EUKARYOTIC SPECIALIZED METABOLISM</b>Katharine E Eastman (18515307) 07 May 2024 (has links)
<p dir="ltr">Metabolic pathways are shaped by dynamic biotic interactions. My research delves into coevolution exemplified through two distinct projects that investigate the specialized metabolism of organisms as a consequence of biotic interactions. The first project focused on the remarkable metabolic adaptations of <i>Elysia crispata</i> morphotype clarki. This sea slug possesses the extraordinary ability to sequester and maintain functional chloroplasts (kleptoplasts) from the algae it consumes, allowing it to sustain photosynthetically active kleptoplasts for several months without feeding. To better understand the underlying molecular mechanism of this phenomenon, I generated a comprehensive 786 Mbp draft genome of <i>E. crispata</i> using a combination of ONT long reads and Illumina short reads. The resulting assembly provided a foundational resource for phylogenetic, gene family and gene expression analyses. This work advanced our understanding of the genetic underpinnings of kleptoplasty, shedding light on the evolution and maintenance of this unique metabolic strategy in sacoglossan sea slugs. I next investigated the transcriptional impacts of herbivory on maize (<i>Zea mays</i>) and green foxtail (<i>Setaria viridis</i>), induced by fall armyworm (<i>Spodoptera frugiperda</i>) and beet armyworm (<i>Spodoptera exigua</i>) feeding. This study aimed to contrast the defensive mechanisms of these grasses in response to each herbivore, and determined that green foxtail transcriptionally differentiates its responses to fall armyworm and beet armyworm herbivory. The fall armyworm has evolved a counter adaptation to lessen plant secondary metabolite production by producing a salivary protein (SFRP1) that suppresses jasmonate signaling. Investigation of the combinatorial effects of SFRP1 and beet armyworm herbivory determined the addition of endogenous SFRP1 during beet armyworm feeding is sufficient to reduce green foxtail defense responses. Results of this research shed light on host-pest reciprocal adaptations and the role of SFRP1 as an oral secretory protein. Coexpression analysis of maize and green foxtail transcriptomic responses to herbivory also identified putative genes involved in specialized metabolic pathways in green foxtail, providing insights into plant-insect interactions and potential solutions to herbivory in wild plant species. These findings highlight how gene diversification can contribute to pest resistance in grasses. Together, these seemingly unconnected projects underscore how biotic interactions influence metabolic processes across diverse organisms and reveal the fascinating intricacies of their adaptations to environmental challenges.</p>
|
42 |
Systems toxicology identifies mechanistic impacts of 2-amino-4, 6-dinitrotoluene (2A-DNT) exposure in Northern BobwhiteGust, Kurt A., Nanduri, Bindu, Rawat, Arun, Wilbanks, Mitchell S., Ang, Choo Y., Johnson, David R., Pendarvis, Ken, Chen, Xianfeng, Quinn, Michael J., Johnson, Mark S., Burgess, Shane C., Perkins, Edward J. January 2015 (has links)
BACKGROUND: A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. RESULTS: As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. CONCLUSION: Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.
|
43 |
INVESTIGATING ICHNEUMONIDAE: INSIGHTS INTO SPECIES IDENTIFICATION AND VENOM COMPOSITIONPook, Victoria G. 01 January 2016 (has links)
Parasitoid wasps are hyperdiverse, with current estimates suggesting that they may account for up to 20% of all insect species. Though their ecological significance and their importance in integrated pest management cannot be denied, these taxa remain understudied and, due to their small size, are often overlooked. However, recent advances in molecular techniques are helping to reverse this trend by providing tools which scientists can use to better understand species limits and host interactions.
Parasitoid wasps are often morphologically cryptic and their accurate delimitation requires the analysis of DNA sequence data from fast-evolving genes in addition to morphological characters. The research presented here demonstrates the utility of a new molecular locus in species delimitation. Also, a morphological key to the species of a genus occurring in America, north of Mexico is presented.
The interactions between parasitoid wasps and their hosts are highly complex. On the wasp side, it involves the production venom, which likely contains bountiful natural resources. In this study, the venom proteins of wasps of the genus Megarhyssa (Hymenoptera: Ichneumonidae) are identified. Putative functions are assigned to these proteins and possible applications are discussed. One of the proteins identified is the enzyme, laccase, which is associated with the degradation and digestion of wood. The sequence of the gene coding for this laccase was analyzed and used to create recombinant proteins in a baculovirus-insect cell expression system. Future work investigating this enzyme is necessary to determine its activity against the plant cell wall.
The research presented here provides insight into the identification and venom composition of ichneumonid wasps. The results contribute to our knowledge of this understudied taxon and indicate that there is much to be gained from further research in this field which will become increasingly practicable as molecular techniques advance and become more affordable.
|
44 |
Understanding the mechanisms of drug resistance in enhancing rapid molecular detection of drug resistance in Mycobacterium tuberculosisJohnson, Rabia 12 1900 (has links)
Thesis (PhD (Biomedical Sciences. Molecular Biology and Human Genetics))--University of Stellenbosch, 2007. / One of the aims of direct observed therapy strategy implemented by the World Health
Organization was to prevent the development of drug resistant tuberculosis. However, in recent
years a dramatic increase and spread in multidrug resistant tuberculosis has been observed. In
this study, a molecular epidemiological approach was used to understand and rapidly detect drug
resistance in high incidence tuberculosis communities of the Western Cape, South Africa.
Previous studies showed that, drug resistant tuberculosis occurs as a result of spontaneous
mutations in particular genes. Using molecular techniques, we developed an algorithm to rapidly
detect isoniazid, rifampicin and ethambutol drug resistance in tuberculosis patients from a short
term mini culture. Rapid detection of drug resistance is important to prevent future transmission
events. In addition, accurate ethambutol resistance testing is of particular importance, since
treatment of patients infected with multidrug resistant strains with second line anti-tuberculosis
drugs depend on the ethambutol test results. In a comprehensive study, we found that the
algorithm performs well when compared to the traditional culture method currently used by the
routine laboratories. However, the results showed that more then 90 % of ethambutol resistance
is missed by the routine laboratories. This has important implications for the tuberculosis control
program, since patients infected with the drug resistant strain may be on inappropriate treatment.
In this study, we found that certain strains have a selective advantage to become drug resistant
and transmit and this implies that they are more virulent and fit than other strains. This
observation has also been made for strains within the same genotype family. The more
transmissible drug resistant strains cause large drug resistant outbreaks. This study highlights the complexity of the drug resistant epidemic, and confirms that it is a
major problem in local communities. Application of molecular methods has provided us with
tools to study how resistance might develop. We have demonstrated how we made use of a
newly developed method to detect a multidrug resistant outbreak in the study community. The
applications of transcriptomics identified several genes that might play a role in isoniazid
resistance. Using this data a model was proposed whereby isoniazid resistant strains can
compensate for the toxic effect of the drug. Application of comparative genomics by whole
genome sequencing will be used to assist us in the further understanding of the mechanisms of
drug resistance.
This study also conclude that we should continue in our attempts to develop faster diagnostics
for both first and second line drugs and that we must not loose site that all of this research must
in the end benefit the patients.
|
45 |
Genetic and Epigenetic Mechanisms Underlying Stress-Induced Behavioral ChangeMcCann, Katharine E 09 May 2016 (has links)
Social stress is the most common stressor experienced by humans and exposure to social stress is thought to cause or exacerbate neuropsychiatric illness. Social stress also leads to behavioral and physiological responses in many animal models that closely mirror the symptoms of fear and anxiety in humans. Our laboratory uses Syrian hamsters to study behavioral responses to social stress. Hamsters are highly territorial, but after losing an agonistic encounter, hamsters exhibit a striking behavioral change, abandoning all territorial aggression and instead becoming highly submissive. This behavioral shift is termed conditioned defeat. Epigenetic modifications, such as changes in histone acetylation, are a possible molecular mechanism underlying such behavioral shifts. Histone deacetylase (HDAC) inhibitors have been shown to enhance fear learning and conditioned place preference for drugs of abuse, while suppressing histone acetylation with histone acetyltransferase (HAT) inhibitors impairs long-term memory formation. The first goal of this study was to test the hypothesis that histone acetylation is a molecular mechanism underlying conditioned defeat. We found that animals given an HDAC inhibitor systemically before social defeat later exhibited increased conditioned defeat. This treatment also suppressed defeat-induced immediate-early gene activity in the infralimbic cortex but not the basolateral amygdala. Next, we demonstrated that administration of an HDAC inhibitor in the infralimbic cortex before defeat enhanced stress-induced behavioral responses while HAT inhibition blocked these behavioral changes. Although both males and females exhibit conditioned defeat, the behavioral expression is more pronounced in males. We next used transcriptomic analysis to investigate potential genetic mechanisms leading to this sexually dimorphic expression and to further delineate the role of acetylation in stress-induced behavioral changes. We sequenced the whole brain transcriptome of male and female hamsters as well as the transcriptome of basolateral amygdala, a nucleus necessary for the acquisition and expression of conditioned defeat, of dominant, subordinate, and control animals. Our analysis revealed that numerous genes relating to histone acetylation, including several HDACs, were differentially expressed in animals of different social status and between sexes. Together, these data support the hypotheses that histone modifications underlie behavioral responses to social stress and that some of these modifications are sexually dimorphic.
|
46 |
Integration of RNA and protein expression profiles to study human cellsDanielsson, Frida January 2016 (has links)
Cellular life is highly complex. In order to expand our understanding of the workings of human cells, in particular in the context of health and disease, detailed knowledge about the underlying molecular systems is needed. The unifying theme of this thesis concerns the use of data derived from sequencing of RNA, both within the field of transcriptomics itself and as a guide for further studies at the level of protein expression. In paper I, we showed that publicly available RNA-seq datasets are consistent across different studies, requiring only light processing for the data to cluster according to biological, rather than technical characteristics. This suggests that RNA-seq has developed into a reliable and highly reproducible technology, and that the increasing amount of publicly available RNA-seq data constitutes a valuable resource for meta-analyses. In paper II, we explored the ability to extrapolate protein concentrations by the use of RNA expression levels. We showed that mRNA and corresponding steady-state protein concentrations correlate well by introducing a gene-specific RNA-to-protein conversion factor that is stable across various cell types and tissues. The results from this study indicate the utility of RNA-seq also within the field of proteomics. The second part of the thesis starts with a paper in which we used transcriptomics to guide subsequent protein studies of the molecular mechanisms underlying malignant transformation. In paper III, we applied a transcriptomics approach to a cell model for defined steps of malignant transformation, and identified several genes with interesting expression patterns whose corresponding proteins were further analyzed with subcellular spatial resolution. Several of these proteins were further studied in clinical tumor samples, confirming that this cell model provides a relevant system for studying cancer mechanisms. In paper IV, we continued to explore the transcriptional landscape in the same cell model under moderate hypoxic conditions. To conclude, this thesis demonstrates the usefulness of RNA-seq data, from a transcriptomics perspective and beyond; to guide in analyses of protein expression, with the ultimate goal to unravel the complexity of the human cell, from a holistic point of view. / <p>QC 20161121</p>
|
47 |
Identification of the molecular changes underlying head morphology variation in closely related Drosophila speciesTorres Oliva, Montserrat 23 May 2016 (has links)
No description available.
|
48 |
Transcriptome-wide analysis in cells and tissuesVickovic, Sanja January 2017 (has links)
High-throughput sequencing has greatly influenced the amount of data produced and biological questions asked and answered. Sequencing approaches have also enabled rapid development of related technological fields such as single-cell and spatially resolved expression profiling. The introductory parts of this thesis give an overview of the basic molecular and technological apparatus needed to analyse the transcriptome in cells and tissues. This is succeeded by a summary of present investigations that report recent advancements in RNA profiling. RNA integrity needs to be preserved for accurate gene expression analysis. A method providing a low-cost alternative for RNA preservation was reported. Namely, a low concentration of buffered formaldehyde was used for fixation of human cell lines and peripheral blood cells (Paper I). The results from bulk RNA sequencing confirmed gene expression was not negatively impacted with the preservation procedure (r2>0.88) and that long-term storage of such samples was possible (r2=0.95). However, it is important to note that a small population of cells overexpressing a limited amount of genes can skew bulk gene expression analyses making them sufficient only in carefully designed studies. Therefore, gene expression should be investigated at the single cell resolution when possible. A method for high-throughput single cell expression profiling termed microarrayed single-cell sequencing was developed (Paper II). The method incorporated fluorescence-activated cell sorting, sample deposition and profiling of thousands of barcoded single cells in one reaction. After sample attachment to a barcoded array, a high-resolution image was taken which linked the position of each array barcode sequence to each individual deposited cell. The cDNA synthesis efficiency was estimated at 17.3% while detecting 27,427 transcripts per cell on average. Additionally, spatially resolved analysis is important in cell differentiation, organ development and pathological changes. Current methods are limited in terms of throughput, cost and time. For that reason, the spatial transcriptomics method was developed (Paper III). Here, the barcoded microarray was used to obtain spatially resolved expression profiles from tissue sections using the same imaging principle. The mouse olfactory bulb was profiled on a whole-transcriptome scale and the results showed that the expression correlated well (r2=0.94-0.97) as compared to bulk RNA sequencing. The method was 6.9% efficient, reported signal diffusion at ~2 μm and accurately deconvoluted layer-specific transcripts in an unbiased manner. Lastly, the spatial transcriptomics concept was applied to profile human breast tumours in three dimensions (Paper IV). Unbiased clustering revealed previously un-annotated regions and classified them as parts of the immune system, providing a detailed view into complex interactions and crosstalk in the whole tissue volume. Spatial tumour classification divulged that certain parts of the tumour clearly classified as other subtypes as compared to bulk analysis providing useful data for current practice diagnostics. The last part of the thesis discusses a look towards the future, how the presented methods could be used, improved upon or combined in translational research. / <p>QC 20170109</p>
|
49 |
Integrative Computational Genomics Defines the Molecular Origins and Outcomes of LymphomaMoffitt, Andrea Barrett January 2016 (has links)
<p>Lymphomas are a heterogeneous group of hematological malignancies composed of diseases with diverse molecular origins and clinical outcomes. Derived from immune cells of lymphoid origin, lymphoma can arise from lymphoid cells present anywhere in the body, from the spleen and lymph nodes to peripheral sites like the liver and intestines. Current strategies for lymphoma diagnosis involve primarily histopathological examinations of the tumor biopsy, including cytogenetics and immunophenotyping. As more data becomes available, diagnoses may increasingly depend on genomic features that define each disease. Classification of lymphoid neoplasms is generally based on the cell of origin, or the lineage of the normal cell that the cancer is thought to arise from. Lymphomas can be classified into dozens of distinct diagnostic entities, though any two patients with the same diagnosis may have very different outcomes and molecular underpinnings, so we need to understand both the commonalities of patients with the same disease and the unique features that may require personalized treatment strategies. Patient prognosis in lymphoma depends greatly on the type of lymphoma, ranging from nearly curable diseases with over 90% five-year survival rates, to most patients dying in the first year in the worse entities. Greater clarity is needed in the role of the underlying genomics that contribute to these variable treatment responses and clinical outcomes. </p><p>Next-generation sequencing approaches allow us to delve into the molecular underpinnings of lymphomas, in order to gain insight about the origin and evolution of these diseases. High-throughput sequencing protocols allow us to examine the whole genome, exome, epigenome, or transcriptome of cancer cells in tens to hundreds of patients for each disease. As cost of sequencing is reduced, and the ability to generate more data increases, we face increasing computational challenges to both process and interpret the wealth of data available in cancer genomics. Developing efficient and effective bioinformatics tools is necessary to transform billions of sequencing reads into actionable hypotheses on the role of certain genes or biological pathways in a specific cancer type or patient. </p><p>In this dissertation, I present several strategies and applications of integrative computational genomics in lymphoma, with contributions throughout the research process, from development of initial assays and quality control strategies for the sequencing data, to joint analysis of clinical and genomic data, and finally through follow-up experimental models for lymphoma. </p><p>First, I focus on two rare T cell lymphomas, hepatosplenic T cell lymphoma (HSTL) and enteropathy associated T cell lymphoma (EATL), which are both diseases with very poor clinical outcomes and a previous dearth of knowledge on the genetic basis of the diseases. We define the somatic mutation landscape of HSTL, through application of exome sequencing and find SETD2 to be the most highly mutated gene. We further utilize the exome sequencing data to investigate copy number alterations and show a significant survival difference between cases with and without certain arm-level copy number alterations. Knockdown of SETD2 in an HSTL cell line, followed by RNA sequencing, demonstrates the role of SETD2 loss in proliferation and cell cycle changes, linking the SETD2 mutations to a potential oncogenic mechanism. Furthermore, we investigate the potentially targetable mutations in the JAK-STAT pathway and demonstrate oncogenic downstream molecular phenotypes and potential druggability of these mutations. In the enteropathy associated T cell lymphoma study, we apply exome and RNA sequencing to a large EATL cohort. Our findings show a significant role for loss of function mutations in chromatin modifiers and JAK-STAT signaling genes. EATL can be separated into two subtypes, Type I and Type II, which we show to have convergent genomic features, in the face of divergent gene expression. RNA sequencing data defines a distinct separation between the two subtypes. Delving further into the role of SETD2 in these T cell lymphomas, we generate a mouse model with a conditional knockout of SETD2 in T cells and demonstrate a role for SETD2 in altering the lineage development of T cells. </p><p>To understand more about why certain genetic abnormalities are recurrent in some disease entities and not others, we turn to the cell of origin for clues. We pair two different lymphomas, Burkitt lymphoma and mantle cell lymphoma, with their associated cells of origin, germinal center B cells and naive B cells. These closely related cell types have much in common as B cells, but from studies of their transcriptomes, we know that there are many molecular differences that distinguish the two. In this work, after looking more closely at mantle cell lymphoma genomics, we look at the underlying chromatin markers that define the epigenomes of these B cells. We test the association between chromatin markers and mutation rates of genes between these two cell types and lymphomas, and find that genes with more open chromatin may have a higher mutation rate, when comparing closely related cells and lymphomas. Finally, I present my work on developing an RNA sequencing based strategy for defining the complete transcriptome of diffuse large B cell lymphoma (DLBCL). Gene expression profiling with microarray has shown the existence of two subtypes in DLBCL, activated B cell like (ABC) and germinal center B cell like (GCB). However, the role for non-coding RNAs, alternative splicing, and mutations, in these two subtypes and the larger group is previously not well understood. We develop a strand-specific RNA sequencing strategy that will allow the investigation of the total RNA transcriptome in DLBCL, including microRNAs, lncRNAs, and other important non-coding RNAs. Furthermore, we show that RNA sequencing can be used to distinguish the two subtypes, including through RNA sequencing based mutation calls, as well as through differentially expressed lncRNAs that we define for the first time in DLBCL.</p><p>Broadly, this dissertation contributes novel findings in the field of lymphoma genomics, as well as presenting a framework for computational integrative genomics that can guide future studies. The heterogeneity of lymphoma across cases requires us to dive deep into individual diseases, even rare ones, as well as appreciate the similarities and differences across lymphomas. To improve diagnoses, prognoses, and treatment options, we need to understand the molecular origins of lymphoma. Using a range of molecular and computational approaches, we can move closer to true personalized medicine at the genomic level.</p> / Dissertation
|
50 |
Signalling circuitry controlling fungal virulence in the rice blast fungus Magnaporthe oryzaeOses-Ruiz, Miriam January 2014 (has links)
Rice blast disease is caused by the filamentous ascomycete fungus Magnaporthe oryzae and is the most destructive disease of cultivated rice. The pathogen elaborates a specialized infection structure called the appressorium. The morphological and physiological transitions that lead to appressorium formation of M. oryzae are stimulated through perception of environmental signals and are tightly regulated by cell cycle checkpoints. External stimuli are internalized by a variety of intracellular MAP kinase signaling pathways, and the major pathway regulating appressorium morphogenesis and plant infection is the Pmk1 MAP kinase signaling pathway. The central kinase, Pmk1, is required for appressorium morphogenesis and the homeobox and C2/H2 Zn-finger domain transcription factor, called Mst12, is required for appressorium formation and tissue invasion. The Mst12 null mutant is able to form melanised appressoria, but it is non-pathogenic. To understand the mechanism of appressorium morphogenesis and penetration peg formation, genome-wide comparative transcriptional profiling analysis was performed for the Δpmk1 and Δmst12 mutant using RNA-seq and HiSeq 2000 sequencing. This thesis reports the identification of gene sets regulated by the Pmk1 signalling pathway and defines the sub-set of these genes regulated by Mst12. I show that a hierarchy of transcription factors is likely to operate downstream of Pmk1 to regulate the main processes required for appressorium morphogenesis and plant infection. I also report the role of Mst12 in cytoskeletal re-organisation and show that it is necessary for septin-dependent F-actin polymerisation at the base on the appressorium prior to plant infection. This is consistent with the major transcriptional changes observed by RNA-seq. The thesis also reports experiments that strongly suggest that appressorium mediated plant penetration is regulated by an S-phase checkpoint which operates independently of the conventional DNA damage and repair response, and the Cds1 and Chk1 checkpoint kinases. Transcriptional profiling results are consistent with the S-phase checkpoint operating downstream of the Pmk1 MAP kinase signalling pathway. An integrated model for the operation of the Pmk1/Mst12 signalling pathways and the hierarchical control of appressorium morphogenesis in the rice blast fungus is presented.
|
Page generated in 0.0665 seconds