• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • 91
  • 46
  • 19
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 6
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 475
  • 103
  • 91
  • 63
  • 57
  • 47
  • 34
  • 33
  • 33
  • 28
  • 25
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Investigation of dynamic temperature response of pressure transducers

Iyer, Ramalingam Subramanyam, January 1970 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1970. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
102

A capacitive transducer for process and quality monitoring in injection molding /

Fung, Ka Tsai. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 112-123). Also available in electronic version.
103

A capacitive transducer for solidification rate monitoring of polymer in injection molding /

Wong, Ho Yin. January 2007 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2007. / Includes bibliographical references (leaves 81-88). Also available in electronic version.
104

Modeling and optimal design of annular array based ultrasound pulse-echo system

Wan, Li. January 2001 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Title from title screen. Keywords: optimal design; modeling; object identification; ultrasound pulse-echo system; annular array. Includes bibliographical references (p. 159-162).
105

An ultrasonic system for intravascular measurement and visualisation of anatomical structures and blood flow

Kardan, Ahmad A. January 1991 (has links)
No description available.
106

Radiation pattern of a disk transducer in sea ice.

Hwang, Chung-Yung. January 1967 (has links)
No description available.
107

Whole field displacement measurements by holographic interferometry - with application on sonic transducers /

Allaire, Roger Alphee, 1941- January 1973 (has links)
No description available.
108

Piezoceramic Actuated Transducers for Interior Acoustic Noise Control

Green, Kimball W. 17 August 2000 (has links)
Weight is a critical parameter in the design of any system launched into space. Current launch costs are on the order of 10,000 dollars per pound of payload capacity. Reducing weight and thus increasing payload capacity is always in the forefront of the design process. One method of increasing the payload capacity of launch vehicles is to reduce the acoustic environment in the interior of the fairing. A major problem is that passive methods currently used for noise suppression do not exhibit significant energy dissipation at low frequencies. This motivates the use of active noise control. Using active noise control for frequencies below 200 to 300 Hz in addition to the passive control means has potential to provide broadband noise suppression and thus a smoother, cheaper ride for any payload. The problem with this technique is that active noise control commonly uses electromagnetic speakers as the control element. The weight of the speaker adds more cost to the application due to the approximate cost per pound to send a launch vehicle and payload to space. At 10,000 dollars per pound of payload capacity, the added cost spent on protecting the payload can potentially reduce the amount of payload capacity a customer receives due to monies spent on non-payload mass. Therefore, necessity dictates a light weight noise control solution. This work investigates the feasibility of a transducer with less mass than that of a conventional loudspeaker which dissipates energy at the acoustic resonances of an enclosed cavity. The test setup involves using the transducer to lower the sound pressure levels of acoustic resonances which are excited by an external source, thus simulating the launch phase of a launch vehicle. The transducer is used as an actuator to add damping through feedback control. The transducer is comprised of three thin flexures that are actuated by piezoceramic material attached to both sides. The flexures actuate a speaker cone that is attached to the end of the flexures. The transducer can act as a sensor or an actuator due to the nature of the piezoceramics. The sound absorbing transducer is modeled to couple to the first acoustic resonance of a six foot cylindrical cavity. The cavity acts as a simplified model of a launch vehicle payload fairing. Equations of motion are derived to model actuator motion and the acoustic impedance of the cavity. A state-space model of the system was derived for two cases: a collocated sensor/actuator pair exciting the tube and an external source exciting the tube with the transducer acting as an absorber. The transducer is designed to affect the first mode, however damping is noticed in the next acoustic resonance. Analysis of the theoretical model indicated up to 70 percent reduction of the open-loop RMS values or a reduction of 10 dB. Experimental results with the optimized transducer produced a 35 percent reduction of the open-loop RMS value or 3.73 dB. The first acoustic resonance coupled well with the first structural mode of the transducer providing optimal noise suppression for the first mode. Damping was also noted in the second acoustic mode. Neglecting the inertia of the tip mass introduced errors in the predictions of the transducer resonances at higher frequencies. This problem limited the ability to control the higher modes of the cavity. / Master of Science
109

Dual-electrode capacitive micromachined ultrasonic transducers for medical ultrasound applications

Guldiken, Rasim Oytun 08 August 2008 (has links)
Capacitive Micromachined Ultrasonic Transducers (CMUTs) have been introduced as a viable alternative to piezoelectric transducers in medical ultrasound imaging in the last decade. CMUTs are especially suitable for applications requiring small size such as catheter based cardiovascular applications. Despite these advantages and their broad bandwidth, earlier studies indicated that the overall sensitivity of CMUTs need to be improved to match piezoelectric transducers. This dissertation addresses this issue by introducing the dual-electrode CMUT concept. Dual electrode configuration takes advantage of leveraged bending in electrostatic actuators to increase both the pressure output and receive sensitivity of the CMUTs. Static and dynamic finite element based models are developed to model the behavior of dual-electrode CMUTs. The devices are then successfully fabricated and characterized. Experiments illustrate that the pulse echo performance is increased by more than 15dB with dual-electrode CMUTs as compared to single electrode conventional CMUT. Further device optimization is explored via membrane shape adjustment by adding a center mass to the design. Electromechanical coupling coefficient (kc2) is investigated as a figure of merit to evaluate performance improvement with non-uniform/uniform membrane dual-electrode CMUTs. When the center mass is added to the design, the optimized non-uniform membrane increases the electromechanical coupling coefficient from 0.24 to 0.85 while increasing one-way 3dB fractional bandwidth from 80% to 140% and reducing the DC bias requirement from 160V to 132V. The results of this modeling study are successfully verified by experiments. With this membrane shape adjustment, significant performance improvement (nearly 20dB) is achieved with the dual-electrode CMUT structure that enables the CMUT performance to exceed that of piezoelectric transducers for many applications.
110

IEEE P1451.0 CORE TEDS AND COMMON COMMAND SET

Eccles, Lee H., Jones, Charles H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The Technical Committee 9 (TC-9) of the Institute of Electrical and Electronics Engineers (IEEE) Instrument and Measurement Society wants to ensure that all members of the IEEE 1451 family of standards conform to a common set of basic functionality and have, at some level, a common interface. To this end, the IEEE p1451.0 working group has been chartered to prepare an overarching standard that will define the operation of the other members of the family while still leaving the physical interface up to the various other standards working groups. The IEEE p1451.0 will define the general functionality required of an IEEE 1451 transducer, a common command set that is appropriate to all family members, and the core set of transducer electronic data sheets (TEDS). This paper gives a brief overview of the overall functionality and follows that with a description of the commands and the TEDS.

Page generated in 0.0327 seconds