Spelling suggestions: "subject:"transferfunctions"" "subject:"transferfunction""
61 |
Especificação de funções de transferência unidimensionais e multidimensionais para visualização volumétrica direta / Design of one-dimensional and multi-dimensional transfer functions for direct volume renderingPinto, Francisco de Moura January 2007 (has links)
O uso de dados volumétricos é bastante comum em diversas áreas da ciência, como Medicina, Física e Meteorologia. São exemplos típicos os dados provenientes de dispositivos de tomografia computadorizada ou ressonância magnética e os obtidos através de estimação de fenômenos físicos pelo uso de sensores diversos ou de simulação numérica. Tais dados apresentam-se, freqüentemente, sob a forma de uma grade tridimensional regular, onde cada elemento possui um valor escalar ou multidimensional (uma tupla de valores). Outras topologias também podem ser usadas para exprimir a disposição espacial dos valores. A visualização de dados volumétricos, importante na compreensão destes, é um processo não-trivial e, em decorrência, diversas técnicas foram propostas para abordar o problema. Visualização direta de volumes é uma abordagem em crescente popularização que representa visualmente os dados, conservando sua estrutura tridimensional, sem extrair geometrias intermediárias. Esse processo exige o mapeamento dos atributos dos elementos de volume para propriedades ópticas, permitindo a geração de imagens através da aplicação de um algoritmo de visualização, que pode implementar um modelo de iluminação. Tal mapeamento é definido por uma função, conhecida como função de transferência, que determina valores de atributos ópticos para cada valor encontrado no volume. Essa função desenvolve, portanto, um importante papel na visualização, pois define a visibilidade das estruturas presentes no volume — normalmente valendo-se do atributo opacidade — e também o aspecto destas na imagem final. Contudo, a definição de uma boa função de transferência, capaz de produzir imagens informativas, é um processo complexo que deve ser simplificado com o apoio de ferramentas adequadas. A simples especificação manual de uma função de transferência é um processo iterativo de tentativa e erro, em decorrência da dificuldade de compreensão do relacionamento entre a função utilizada e a imagem gerada, especialmente quando se trata de dados multidimensionais, que implicam funções de transferência com maior número de dimensões. Diante da necessidade de agilizar e simplificar a especificação de funções de transferência, abordagens semi-automáticas e automáticas para geração de funções foram propostas, exigindo do usuário esforço de interação reduzido ou nulo. Entretanto, as propostas existentes deixam a desejar na simplicidade, interatividade ou flexibilidade. O presente trabalho propõe técnicas de especificação de funções de transferência, para volumes escalares e multidimensionais, baseadas na automatização parcial do processo e simplificação do espaço de interação usado na definição das funções.Como principais contribuições, são apresentados uma eficaz combinação de técnicas complementares para especificação de funções de transferência para volumes escalares; e um método de especificação de funções de transferência para volumes multidimensionais que reúne o potencial de classificação dos mapas auto-organizáveis com a capacidade de decisão não-binária acerca davisibilidade e aspecto de voxels pertinente às funções de transferência tradicionais. / Volume data are very often used in several areas of science, such as medicine, physics and meteorology. Typical examples are data provided by computed tomography, magnetic resonance imaging or estimation of physical phenomena through numerical simulation or sensors. Such data are often provided as regular three-dimensional grids where each element has a scalar or higher-dimensional value, though other topologies may also be employed to express the position of the values in the three-dimensional space. Visualizing volume data is very important in understanding the conveyed information, but it is also a hard task. Thus, many approaches to this problem have been developed. Direct volume rendering is a set of visualization techniques that have become very popular because they can visually represent volume data, keeping their three-dimensional structure, without extracting intermediate geometries. Such processes require a mapping from voxels’ attributes to optical attributes, which allows generating images from the data through the application of a visualization algorithm that implements an illumination model, which is often very simple. This mapping, known as transfer function, associates each volume element with values of optical properties. Therefore, transfer functions play an important role in defining the visibility and the aspect of structures inside a volume, typically using opacity and color, respectively, as optical attributes. However, the design of a good transfer function, capable of generating informative images, is a complex task which must be simplified as much as possible through the support of suitable tools. A simple manual design process is a trial-and-error effort, due to the difficulty of understanding the relationship between the transfer function and the generated image, specially when dealing with multi-dimensional volume data, which require transfer functions with a wide domain. The need to accelerate and simplify the transfer function design led to the development of several automatic and semi-automatic approaches to the problem, which can reduce or eliminate the user’s interaction effort. However, the existent proposals lack in simplicity, interactivity or flexibility. This work outlines transfer function design methods for visualization of scalar volume data and multi-dimensional volume data. We propose techniques based on partial automation of the design process and simplification of the interaction space used in TF specification. Our main contributions are an effective combination of complementary techniques for specifying transfer functions for scalar volumes; and a multi-dimensional transfer function design method that brings together the classification capabilities of self-organizing maps and the transfer functions’ ability of non-binary decision on voxels’ visibility and aspect.
|
62 |
Volumetric visualization of confocal datasets obtained from bile duct samplesBeltrán, Lizeth Andrea Castellanos January 2015 (has links)
A exploração visual dos dutos biliares é de relevante interesse clínico, pois fornece informação relacionada com a Atresia Biliar (AB). A AB é uma doença cujas causas ainda permanecem desconhecidas e que eventualmente leva a um transplante de fígado ou, nos casos mais avançados da doença, leva a óbito do paciente. A única evidência física conhecida até agora da existencia de AB é a obstrução das vias biliares. No entanto, o estudo desta doença tem sido limitado pela incapacidade de analisar o duto biliar de pacientes em estágios precoces da doença e muito pouco se sabe sobre a estrutura interna do duto biliar. Nos últimos anos, a microscopia confocal, uma técnica que permite a obtenção de conjuntos de dados 3D de amostras biológicas, tem sido utilizada em experiências médicas para estudar a estrutura interna e anatômica dos dutos biliares. Neste trabalho, é objetivo apoiar o estudo dessas estruturas através da visualização volumétrica de imagens dos dutos biliares. É proposto um pipeline de fluxo de dados capaz de processar e "renderizar"conjuntos de dados de imagens confocais utilizando o VTK (do inglês The Visualization ToolKit). O pipeline foi construído em duas etapas principais e consecutivas. Uma primeira etapa tem o objetivo de remoção de ruído e realce das estruturas relevantes por meio de filtragem no domínio da freqüência e difusão anisotrópica. O conjunto de dados assim pré-processado é usado com técnicas diretas de visualização de volumes baseadas em funções de transferência para exibir as estruturas dos dutos biliares. Os resultados mostram que a visualização volumétrica em conjunto com um pré-processamento adequado das imagens confocais permite evidenciar as regiões de interesse nos dutos biliares e melhora detalhes que são dificilmente visualizados nos dados originais. / The visual exploration of bile ducts in the liver is of relevant clinical interest, as it provides information related to the Biliary Atresia, a disease of unknown origin, which eventually leads to a liver transplant or ultimately to death. The only physical known evidence of biliary atresia is the obstruction of the bile ducts. However, the study of this disease has been limited by the inability to observe the bile duct in patients at early stages of the disease. Moreover, very little is known about the internal structure of the bile duct. In recent years, confocal microscopy, a technique that allows to obtain 3D image datasets from biological samples, has been used in medical experiments for studying the anatomical internal structure of bile ducts. We are interested in supporting the study of these structures through volumetric visualization of bile ducts images. In this work, we propose a data flow pipeline capable of processing and rendering datasets of confocal images using The Visualization ToolKit - VTK. The pipeline was built as two consecutive stages. We propose a first stage for denoising and enhancing the relevant structures of sample based on filtering in the frequency domain and anisotropic diffusion. We use the dataset preprocessed in this way for applying a direct volume rendering technique in a second stage based on transfer functions to visualize the bile duct structures. Our results have shown that volumetric visualization together with an adequate pre-processing of the confocal images allow experts to visualize the regions of interest in the bile ducts, improving details that are hardly visualized in the original data.
|
63 |
Especificação de funções de transferência unidimensionais e multidimensionais para visualização volumétrica direta / Design of one-dimensional and multi-dimensional transfer functions for direct volume renderingPinto, Francisco de Moura January 2007 (has links)
O uso de dados volumétricos é bastante comum em diversas áreas da ciência, como Medicina, Física e Meteorologia. São exemplos típicos os dados provenientes de dispositivos de tomografia computadorizada ou ressonância magnética e os obtidos através de estimação de fenômenos físicos pelo uso de sensores diversos ou de simulação numérica. Tais dados apresentam-se, freqüentemente, sob a forma de uma grade tridimensional regular, onde cada elemento possui um valor escalar ou multidimensional (uma tupla de valores). Outras topologias também podem ser usadas para exprimir a disposição espacial dos valores. A visualização de dados volumétricos, importante na compreensão destes, é um processo não-trivial e, em decorrência, diversas técnicas foram propostas para abordar o problema. Visualização direta de volumes é uma abordagem em crescente popularização que representa visualmente os dados, conservando sua estrutura tridimensional, sem extrair geometrias intermediárias. Esse processo exige o mapeamento dos atributos dos elementos de volume para propriedades ópticas, permitindo a geração de imagens através da aplicação de um algoritmo de visualização, que pode implementar um modelo de iluminação. Tal mapeamento é definido por uma função, conhecida como função de transferência, que determina valores de atributos ópticos para cada valor encontrado no volume. Essa função desenvolve, portanto, um importante papel na visualização, pois define a visibilidade das estruturas presentes no volume — normalmente valendo-se do atributo opacidade — e também o aspecto destas na imagem final. Contudo, a definição de uma boa função de transferência, capaz de produzir imagens informativas, é um processo complexo que deve ser simplificado com o apoio de ferramentas adequadas. A simples especificação manual de uma função de transferência é um processo iterativo de tentativa e erro, em decorrência da dificuldade de compreensão do relacionamento entre a função utilizada e a imagem gerada, especialmente quando se trata de dados multidimensionais, que implicam funções de transferência com maior número de dimensões. Diante da necessidade de agilizar e simplificar a especificação de funções de transferência, abordagens semi-automáticas e automáticas para geração de funções foram propostas, exigindo do usuário esforço de interação reduzido ou nulo. Entretanto, as propostas existentes deixam a desejar na simplicidade, interatividade ou flexibilidade. O presente trabalho propõe técnicas de especificação de funções de transferência, para volumes escalares e multidimensionais, baseadas na automatização parcial do processo e simplificação do espaço de interação usado na definição das funções.Como principais contribuições, são apresentados uma eficaz combinação de técnicas complementares para especificação de funções de transferência para volumes escalares; e um método de especificação de funções de transferência para volumes multidimensionais que reúne o potencial de classificação dos mapas auto-organizáveis com a capacidade de decisão não-binária acerca davisibilidade e aspecto de voxels pertinente às funções de transferência tradicionais. / Volume data are very often used in several areas of science, such as medicine, physics and meteorology. Typical examples are data provided by computed tomography, magnetic resonance imaging or estimation of physical phenomena through numerical simulation or sensors. Such data are often provided as regular three-dimensional grids where each element has a scalar or higher-dimensional value, though other topologies may also be employed to express the position of the values in the three-dimensional space. Visualizing volume data is very important in understanding the conveyed information, but it is also a hard task. Thus, many approaches to this problem have been developed. Direct volume rendering is a set of visualization techniques that have become very popular because they can visually represent volume data, keeping their three-dimensional structure, without extracting intermediate geometries. Such processes require a mapping from voxels’ attributes to optical attributes, which allows generating images from the data through the application of a visualization algorithm that implements an illumination model, which is often very simple. This mapping, known as transfer function, associates each volume element with values of optical properties. Therefore, transfer functions play an important role in defining the visibility and the aspect of structures inside a volume, typically using opacity and color, respectively, as optical attributes. However, the design of a good transfer function, capable of generating informative images, is a complex task which must be simplified as much as possible through the support of suitable tools. A simple manual design process is a trial-and-error effort, due to the difficulty of understanding the relationship between the transfer function and the generated image, specially when dealing with multi-dimensional volume data, which require transfer functions with a wide domain. The need to accelerate and simplify the transfer function design led to the development of several automatic and semi-automatic approaches to the problem, which can reduce or eliminate the user’s interaction effort. However, the existent proposals lack in simplicity, interactivity or flexibility. This work outlines transfer function design methods for visualization of scalar volume data and multi-dimensional volume data. We propose techniques based on partial automation of the design process and simplification of the interaction space used in TF specification. Our main contributions are an effective combination of complementary techniques for specifying transfer functions for scalar volumes; and a multi-dimensional transfer function design method that brings together the classification capabilities of self-organizing maps and the transfer functions’ ability of non-binary decision on voxels’ visibility and aspect.
|
64 |
Volumetric visualization of confocal datasets obtained from bile duct samplesBeltrán, Lizeth Andrea Castellanos January 2015 (has links)
A exploração visual dos dutos biliares é de relevante interesse clínico, pois fornece informação relacionada com a Atresia Biliar (AB). A AB é uma doença cujas causas ainda permanecem desconhecidas e que eventualmente leva a um transplante de fígado ou, nos casos mais avançados da doença, leva a óbito do paciente. A única evidência física conhecida até agora da existencia de AB é a obstrução das vias biliares. No entanto, o estudo desta doença tem sido limitado pela incapacidade de analisar o duto biliar de pacientes em estágios precoces da doença e muito pouco se sabe sobre a estrutura interna do duto biliar. Nos últimos anos, a microscopia confocal, uma técnica que permite a obtenção de conjuntos de dados 3D de amostras biológicas, tem sido utilizada em experiências médicas para estudar a estrutura interna e anatômica dos dutos biliares. Neste trabalho, é objetivo apoiar o estudo dessas estruturas através da visualização volumétrica de imagens dos dutos biliares. É proposto um pipeline de fluxo de dados capaz de processar e "renderizar"conjuntos de dados de imagens confocais utilizando o VTK (do inglês The Visualization ToolKit). O pipeline foi construído em duas etapas principais e consecutivas. Uma primeira etapa tem o objetivo de remoção de ruído e realce das estruturas relevantes por meio de filtragem no domínio da freqüência e difusão anisotrópica. O conjunto de dados assim pré-processado é usado com técnicas diretas de visualização de volumes baseadas em funções de transferência para exibir as estruturas dos dutos biliares. Os resultados mostram que a visualização volumétrica em conjunto com um pré-processamento adequado das imagens confocais permite evidenciar as regiões de interesse nos dutos biliares e melhora detalhes que são dificilmente visualizados nos dados originais. / The visual exploration of bile ducts in the liver is of relevant clinical interest, as it provides information related to the Biliary Atresia, a disease of unknown origin, which eventually leads to a liver transplant or ultimately to death. The only physical known evidence of biliary atresia is the obstruction of the bile ducts. However, the study of this disease has been limited by the inability to observe the bile duct in patients at early stages of the disease. Moreover, very little is known about the internal structure of the bile duct. In recent years, confocal microscopy, a technique that allows to obtain 3D image datasets from biological samples, has been used in medical experiments for studying the anatomical internal structure of bile ducts. We are interested in supporting the study of these structures through volumetric visualization of bile ducts images. In this work, we propose a data flow pipeline capable of processing and rendering datasets of confocal images using The Visualization ToolKit - VTK. The pipeline was built as two consecutive stages. We propose a first stage for denoising and enhancing the relevant structures of sample based on filtering in the frequency domain and anisotropic diffusion. We use the dataset preprocessed in this way for applying a direct volume rendering technique in a second stage based on transfer functions to visualize the bile duct structures. Our results have shown that volumetric visualization together with an adequate pre-processing of the confocal images allow experts to visualize the regions of interest in the bile ducts, improving details that are hardly visualized in the original data.
|
65 |
Especificação de funções de transferência unidimensionais e multidimensionais para visualização volumétrica direta / Design of one-dimensional and multi-dimensional transfer functions for direct volume renderingPinto, Francisco de Moura January 2007 (has links)
O uso de dados volumétricos é bastante comum em diversas áreas da ciência, como Medicina, Física e Meteorologia. São exemplos típicos os dados provenientes de dispositivos de tomografia computadorizada ou ressonância magnética e os obtidos através de estimação de fenômenos físicos pelo uso de sensores diversos ou de simulação numérica. Tais dados apresentam-se, freqüentemente, sob a forma de uma grade tridimensional regular, onde cada elemento possui um valor escalar ou multidimensional (uma tupla de valores). Outras topologias também podem ser usadas para exprimir a disposição espacial dos valores. A visualização de dados volumétricos, importante na compreensão destes, é um processo não-trivial e, em decorrência, diversas técnicas foram propostas para abordar o problema. Visualização direta de volumes é uma abordagem em crescente popularização que representa visualmente os dados, conservando sua estrutura tridimensional, sem extrair geometrias intermediárias. Esse processo exige o mapeamento dos atributos dos elementos de volume para propriedades ópticas, permitindo a geração de imagens através da aplicação de um algoritmo de visualização, que pode implementar um modelo de iluminação. Tal mapeamento é definido por uma função, conhecida como função de transferência, que determina valores de atributos ópticos para cada valor encontrado no volume. Essa função desenvolve, portanto, um importante papel na visualização, pois define a visibilidade das estruturas presentes no volume — normalmente valendo-se do atributo opacidade — e também o aspecto destas na imagem final. Contudo, a definição de uma boa função de transferência, capaz de produzir imagens informativas, é um processo complexo que deve ser simplificado com o apoio de ferramentas adequadas. A simples especificação manual de uma função de transferência é um processo iterativo de tentativa e erro, em decorrência da dificuldade de compreensão do relacionamento entre a função utilizada e a imagem gerada, especialmente quando se trata de dados multidimensionais, que implicam funções de transferência com maior número de dimensões. Diante da necessidade de agilizar e simplificar a especificação de funções de transferência, abordagens semi-automáticas e automáticas para geração de funções foram propostas, exigindo do usuário esforço de interação reduzido ou nulo. Entretanto, as propostas existentes deixam a desejar na simplicidade, interatividade ou flexibilidade. O presente trabalho propõe técnicas de especificação de funções de transferência, para volumes escalares e multidimensionais, baseadas na automatização parcial do processo e simplificação do espaço de interação usado na definição das funções.Como principais contribuições, são apresentados uma eficaz combinação de técnicas complementares para especificação de funções de transferência para volumes escalares; e um método de especificação de funções de transferência para volumes multidimensionais que reúne o potencial de classificação dos mapas auto-organizáveis com a capacidade de decisão não-binária acerca davisibilidade e aspecto de voxels pertinente às funções de transferência tradicionais. / Volume data are very often used in several areas of science, such as medicine, physics and meteorology. Typical examples are data provided by computed tomography, magnetic resonance imaging or estimation of physical phenomena through numerical simulation or sensors. Such data are often provided as regular three-dimensional grids where each element has a scalar or higher-dimensional value, though other topologies may also be employed to express the position of the values in the three-dimensional space. Visualizing volume data is very important in understanding the conveyed information, but it is also a hard task. Thus, many approaches to this problem have been developed. Direct volume rendering is a set of visualization techniques that have become very popular because they can visually represent volume data, keeping their three-dimensional structure, without extracting intermediate geometries. Such processes require a mapping from voxels’ attributes to optical attributes, which allows generating images from the data through the application of a visualization algorithm that implements an illumination model, which is often very simple. This mapping, known as transfer function, associates each volume element with values of optical properties. Therefore, transfer functions play an important role in defining the visibility and the aspect of structures inside a volume, typically using opacity and color, respectively, as optical attributes. However, the design of a good transfer function, capable of generating informative images, is a complex task which must be simplified as much as possible through the support of suitable tools. A simple manual design process is a trial-and-error effort, due to the difficulty of understanding the relationship between the transfer function and the generated image, specially when dealing with multi-dimensional volume data, which require transfer functions with a wide domain. The need to accelerate and simplify the transfer function design led to the development of several automatic and semi-automatic approaches to the problem, which can reduce or eliminate the user’s interaction effort. However, the existent proposals lack in simplicity, interactivity or flexibility. This work outlines transfer function design methods for visualization of scalar volume data and multi-dimensional volume data. We propose techniques based on partial automation of the design process and simplification of the interaction space used in TF specification. Our main contributions are an effective combination of complementary techniques for specifying transfer functions for scalar volumes; and a multi-dimensional transfer function design method that brings together the classification capabilities of self-organizing maps and the transfer functions’ ability of non-binary decision on voxels’ visibility and aspect.
|
66 |
Volumetric visualization of confocal datasets obtained from bile duct samplesBeltrán, Lizeth Andrea Castellanos January 2015 (has links)
A exploração visual dos dutos biliares é de relevante interesse clínico, pois fornece informação relacionada com a Atresia Biliar (AB). A AB é uma doença cujas causas ainda permanecem desconhecidas e que eventualmente leva a um transplante de fígado ou, nos casos mais avançados da doença, leva a óbito do paciente. A única evidência física conhecida até agora da existencia de AB é a obstrução das vias biliares. No entanto, o estudo desta doença tem sido limitado pela incapacidade de analisar o duto biliar de pacientes em estágios precoces da doença e muito pouco se sabe sobre a estrutura interna do duto biliar. Nos últimos anos, a microscopia confocal, uma técnica que permite a obtenção de conjuntos de dados 3D de amostras biológicas, tem sido utilizada em experiências médicas para estudar a estrutura interna e anatômica dos dutos biliares. Neste trabalho, é objetivo apoiar o estudo dessas estruturas através da visualização volumétrica de imagens dos dutos biliares. É proposto um pipeline de fluxo de dados capaz de processar e "renderizar"conjuntos de dados de imagens confocais utilizando o VTK (do inglês The Visualization ToolKit). O pipeline foi construído em duas etapas principais e consecutivas. Uma primeira etapa tem o objetivo de remoção de ruído e realce das estruturas relevantes por meio de filtragem no domínio da freqüência e difusão anisotrópica. O conjunto de dados assim pré-processado é usado com técnicas diretas de visualização de volumes baseadas em funções de transferência para exibir as estruturas dos dutos biliares. Os resultados mostram que a visualização volumétrica em conjunto com um pré-processamento adequado das imagens confocais permite evidenciar as regiões de interesse nos dutos biliares e melhora detalhes que são dificilmente visualizados nos dados originais. / The visual exploration of bile ducts in the liver is of relevant clinical interest, as it provides information related to the Biliary Atresia, a disease of unknown origin, which eventually leads to a liver transplant or ultimately to death. The only physical known evidence of biliary atresia is the obstruction of the bile ducts. However, the study of this disease has been limited by the inability to observe the bile duct in patients at early stages of the disease. Moreover, very little is known about the internal structure of the bile duct. In recent years, confocal microscopy, a technique that allows to obtain 3D image datasets from biological samples, has been used in medical experiments for studying the anatomical internal structure of bile ducts. We are interested in supporting the study of these structures through volumetric visualization of bile ducts images. In this work, we propose a data flow pipeline capable of processing and rendering datasets of confocal images using The Visualization ToolKit - VTK. The pipeline was built as two consecutive stages. We propose a first stage for denoising and enhancing the relevant structures of sample based on filtering in the frequency domain and anisotropic diffusion. We use the dataset preprocessed in this way for applying a direct volume rendering technique in a second stage based on transfer functions to visualize the bile duct structures. Our results have shown that volumetric visualization together with an adequate pre-processing of the confocal images allow experts to visualize the regions of interest in the bile ducts, improving details that are hardly visualized in the original data.
|
67 |
[en] RAIN-STREAMFLOW TRANSFER FUNCTION ESTIMATION APPLIED TO MODELLING OF HIDROLOGIC BASINS / [pt] ESTIMAÇÃO DA FUNÇÃO DE TRANSFERÊNCIA CHUVA-VAZÃO APLICADA À MODELAGEM DE BACIAS HIDROGRÁFICASACACIO MAGNO RIBEIRO 06 August 2009 (has links)
[pt] Neste trabalho adaptam-se técnicas matemáticas de análise detalhada de séries de vazões para conseguir estabelecer uma lei de comportamento válida em uma bacia hidrológica. Na análise detalhada onde se aplicam modelos autoregressivos e de médias móveis integrados, cria-se uma função de transferência Chuva-vazão que tenta suprir a falta de séries, extensa ou completa, de vazões. Os dados numéricos utilizados neste estudo são relativos à bacia do Rio Grande. / [en] In this paper mathematical techniques are used to analyze thoroughly streamflow series to establish a law valid for a complete hydrologic basin. For the detailed analysis, where autoregressive integrated moving average modelo are applied a transfer function Rain-Streamflow as built, in order to complete or extend the existing streamflow series. The numerical data used in this work are those of the Rio Grande basin.
|
68 |
Linear dynamical systems with abstract state-spaces.Monauni, Luigi Angelo January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / Ph.D.
|
69 |
Component and fault identification in a machine structure using an acoustic signalOrdubadi, Afarin. January 1980 (has links)
Thesis: Sc. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1980 / Includes bibliographical references. / by Afarin Ordubadi. / Sc. D. / Sc. D. Massachusetts Institute of Technology, Department of Mechanical Engineering
|
70 |
The Impact of Data Imputation Methodologies on Knowledge DiscoveryBrown, Marvin Lane 26 November 2008 (has links)
No description available.
|
Page generated in 0.1132 seconds