• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de l'impact de l'environnement sur la transformation naturelle de l'ADN chez la bactérie pathogène Streptococcus pneumoniae

Peillard, Flora 17 June 2024 (has links)
Note sur les annexes : 3 tableaux en format Excel, les tableaux supplémentaires S1 et S6 accompagnent le chapitre 1 qui présente le manuscrit « Point mutations in functionally diverse genes are associated with increased natural DNA transformation in multidrug resistant Streptococcus pneumoniae » ; le tableau supplémentaire S2 accompagne le chapitre 2 qui présente le manuscrit « On the role of choline in natural DNA transformation in Streptococcus pneumoniae » / *Streptococcus pneumoniae* est une bactérie qui colonise le nasopharynx humain. Présent dans le microbiome nasopharyngé sous forme de biofilms complexes, le pneumocoque atteint ses taux de portage maximum vers l'âge de 2 ou 3 ans, où près de 60% des enfants sont colonisés. Heureusement, la colonisation par le pneumocoque se fait de manière asymptomatique. Cependant, sous l'influence de divers facteurs environnementaux le pneumocoque peut quitter sa niche préférentielle pouvant entraîner des maladies potentiellement mortelles telles que la pneumonie ou la méningite. Le pneumocoque est responsable de plus d'un million de décès chaque année, particulièrement chez les enfants, les personnes âgées et les individus immunodéprimés. Cette menace est exacerbée par l'émergence de souches résistantes et par la grande variabilité antigénique qui lui permet d'échapper au programme de vaccination mis en place. Ce défi de santé publique vient de la remarquable plasticité génétique du pneumocoque, entravant ainsi les possibilités d'interventions cliniques ciblées. Au cœur de ce phénomène : la compétence. La compétence est un état physiologique régulée génétiquement qui confère à la bactérie la capacité de capturer, d'internaliser et d'intégrer de l'ADN exogène dans son chromosome par recombinaison homologue. Ce processus de engendre une considérable variabilité phénotypique, notamment en ce qui concerne la résistance aux antibiotiques et la formation de la capsule polysaccharidique, cible des vaccins disponibles. La compréhension approfondie des mécanismes et des facteurs d'induction de la compétence revêt une importance cruciale pour contenir la propagation des résistances aux antibiotiques et pour prévenir toute évasion de la bactérie vis-à-vis des vaccins. Alors que la compétence pour la transformation naturelle de l'ADN est transitoire dans des conditions planctoniques, les biofilms offrent un cadre idéal pour un échange génétique accru. C'est pourquoi notre choix s'est porté sur le biofilm *de S. pneumoniae* comme modèle d'étude de la transformation naturelle de l'ADN, et, par extension, de la compétence. En laboratoire, la compétence pour la transformation de l'ADN est souvent artificiellement induite par l'utilisation du peptide stimulant la compétence (CSP). Cependant, nos observations ont révélé que l'ajout artificiel de CSP n'est pas toujours nécessaire, dépendant de la souche et des conditions de culture. Nous avons isolé des mutants capables de transformer naturellement sans CSP par un criblage chimio génomique couplé au séquençage de nouvelle génération. Le séquençage du génome de ces mutants a mis en lumière une abondance et une diversité de gènes mutés. L'introduction de ces mutations dans la souche D39 a conduit à une augmentation de la transformation naturelle. Par le biais d'une étude d'association génomique entre des isolats cliniques multirésistants et sensibles aux antibiotiques, nous avons identifié des mutations associées à la multirésistance. Plusieurs gènes sont communs entre les deux études. Ces résultats suggèrent que *S. pneumoniae* utilise la transformation de l'ADN pour sa survie, et l'évolution de ce pathogène favorise la sélection de mutations améliorant ce mécanisme, contribuant ainsi à l'acquisition de résistances multiples. Dans le même contexte, nous avons évalué l'efficacité de transformation de la souche D39 dans divers milieux sans l'ajout de CSP. Seul le milieu CDM lui permet de transformer de l'ADN. Ainsi, des disparités significatives dans la composition du milieu ont été constatées, impactant le processus de transformation. Notamment, une corrélation positive a été observée entre la concentration en choline et l'amélioration de l'efficacité de la transformation. Une analyse transcriptomique effectuée après l'ajout de choline a révélé des altérations dans diverses voies métaboliques, telles que le métabolisme des carbohydrates ou les métabolismes induits lors de l'état de compétence, comme la biosynthèse des bactériocines et du pilus de type IV, essentiel lors de l'absorption de l'ADN exogène. Lors du criblage chimio-génomique mentionné précédemment, une mutation dans la protéine de liaison à la choline CbpL a été identifiée comme ayant un impact sur la transformation de l'ADN, bien que la voie spécifique par laquelle elle exerce cet impact demeure à déterminer. Cette étude a permis d'approfondir notre connaissance des mécanismes moléculaires influencés par la choline sur la transformation génétique, en mettant en lumière le rôle d'une mutation ponctuelle dans une protéine liant la choline sur ce processus. La transformation représente un mode de vie bactérien induit par une variété de facteurs, lui conférant une adaptabilité aux changements environnementaux. Ces deux études ont validé l'efficacité des approches « omiques » dans la compréhension des mécanismes biologiques régissant la cellule bactérienne. / *Streptococcus pneumoniae*, commonly known as pneumococcus, is a bacterium that colonizes the human nasopharynx. Present in the nasopharyngeal microbiome in the form of complex biofilms, pneumococcus reaches its peak carriage rates around the age of 2 or 3, when almost 60% of children are colonized by this bacterium. Fortunately, pneumococcal colonization of the nasopharynx is asymptomatic. However, under the influence of various environmental factors, pneumococcus can leave its preferential niche, leading to potentially fatal illnesses such as pneumonia or meningitis. Pneumococcus is responsible for over a million deaths every year, particularly among children, the elderly and immunocompromised individuals. This threat is exacerbated by the emergence of resistant strains, and by the high antigenic variability that allows it to evade established vaccination programs. This public health challenge stems from pneumococcus' remarkable genetic plasticity, which hinders the possibilities of targeted clinical interventions. At the heart of this phenomenon: competence. Competence is a genetically regulated physiological state that confers on the bacterium the ability to capture, internalize and integrate exogenous DNA into its chromosome through homologous recombination. This process generates considerable phenotypic variability, particularly regarding antibiotic resistance and the formation of the polysaccharide capsule, the target of available vaccines. A thorough understanding of the mechanisms and factors involved in the induction of competence is of crucial importance in containing the spread of antibiotic resistance and preventing vaccine evasion. While competence for natural DNA transformation is transient under planktonic conditions, biofilms offer an ideal setting for increased genetic exchange. This is why we chose the *S. pneumoniae* biofilm as a model for studying natural DNA transformation and, by extension, competence. In the laboratory, competence for DNA transformation is often artificially induced using the competence stimulation peptide (CSP). However, our observations revealed that the artificial addition of CSP is not always necessary, depending on strain and culture conditions. We isolated mutants capable of transforming naturally without CSP by chemo-genomic screening coupled with next-generation sequencing. Genome sequencing of these mutants revealed an abundance and diversity of mutated genes. The introduction of these mutations into the D39 strain led to an increase in natural transformation. Through a genomic association study between multidrug-resistant and antibiotic-susceptible clinical isolates, we identified mutations associated with multidrug resistance. Several genes are common to both studies. These results suggest that *S. pneumoniae* uses DNA transformation for its survival, and the evolution of this pathogen favours the selection of mutations enhancing this mechanism, thus contributing to the acquisition of multiple resistances. In the same context, we evaluated the transformation efficiency of strain D39 in various media without the addition of PSC. Only CDM medium enabled it to transform DNA. Significant disparities in medium composition were observed, impacting the transformation process. A positive correlation was observed between choline concentration and improved transformation efficiency. Transcriptomic analysis carried out after choline addition revealed alterations in various metabolic pathways, such as carbohydrate metabolism or metabolisms induced during the competence state, such as bacteriocin biosynthesis and type IV pilus, essential for the bacterium's uptake of exogenous DNA. In the chemogenomic screen, a mutation in the choline-binding protein CbpL was identified as having an impact on DNA processing, although the specific pathway by which it exerts this impact remains to be determined. This study has deepened our understanding of the molecular mechanisms influenced by choline on genetic transformation, highlighting the role of a point mutation in a choline-binding protein on this process. Transformation represents a bacterial lifestyle induced by a variety of factors, conferring adaptability to environmental changes. These two studies validated the effectiveness of -omics approaches in understanding the biological mechanisms governing the bacterial cell.
2

The DNA translocation apparatus involved in Streptococcus Pneumoniae transformation / L'appareil de translocation de l'ADN chez Streptococcus pneumoniae transformation

Diallo, Amy 30 September 2016 (has links)
La transformation naturelle bactérienne permet aux micro-organismes d'échanger des informations génétiques pour promouvoir leurs réponses adaptatives pour faire face aux changements environnementaux. De l'ADN extracellulaire est incorporé et recombiné au génome de l'hôte. Ce processus augmente la plasticité des bactéries. Chez S. pneumoniae, un pathogène majeur chez l'Homme engendrant des infections pouvant être mortelles, la transformation bactérienne accentue la transmission de gènes de résistance aux antibiotiques. Chez les bactéries à Gram positif, l'opéron comF encode l'expression de deux protéines. L'une est démontrée comme étant essentielle à la transformation, est décrite pour être membranaire. La seconde n'a pas été étudiée. Cependant ces protéines n'ont pas été étudiées d'un point de vue structural ou fonctionnel. Des mutagenèse et le double hybride bactérien ont permis de mettre en évidence que ses protéines sont indispensables pour l'expression de la compétence et interagissent avec de nombreuses protéines du transformasome. De plus, l'expression des deux protéines de manière hétérologue prouve qu'elles sont solubles et forment des oligomères. L'analyse structurale de ComFA, atteste de la conformation atypique de cette helicase trimerique et hexamerique. En outre, l'activité ATPasique simple brin DNA-dépendant de cette protéine est démontrée. Finalement un complexe protéique a été révélé entre ComFA et ComFC dont l'étude microscopique à hautes résolutions prouve l'apparition d'un anneau via l'assemblage de deux hexamères. Ces résultats suggèrent que ComFA est le moteur tirant l'ADN dans la cellule. Quant à ComFC, elle semble aider à la stabilisation de ComFA. / Bacterial natural transformation allows microorganisms to exchange genetic information to promote their adaptive responses to cope with environmental changes. The extracellular DNA is incorporated and recombined with the genome of the host. This phenomenon increases the plasticity of Gram positive and negative bacteria. S. pneumoniae is a major pathogen for humans, which is causing infections that can be deadly. In this specie, bacterial transformation increases the transmission of antibiotic resistance.In Gram-positive bacteria, comF operon encodes the expression of two proteins. One of them, shown to be essential for natural transformation, is expected to be a membrane protein. The second is not described. However, up to now neither protein has been studied from a structural or functional point of view. Mutagenesis technique and double hybrid bacterial assay allowed to show that both proteins are essential for the expression of the competence and interact with many proteins of the transformasome. In addition, heterologous expresion of both proteins have shown their solubility and the formation of oligomers. Structural analysis of ComFA demonstrates the unique conformation of this hexameric and trimeric helicase. Furthermore, the ATPase single stranded DNA-dependent activity of this protein could be detected. Finally, a protein complex is formed between ComFA and ComF, and high-resolution microscopic study proves the occurrence of a ring via a two-hexamers. These results suggest that ComFA is the engine pulling the DNA in the cell. As for ComFC, this protein seems to help stabilizing of ComFA.

Page generated in 0.1323 seconds