• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 54
  • 24
  • 20
  • 19
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • Tagged with
  • 383
  • 383
  • 302
  • 285
  • 118
  • 59
  • 55
  • 55
  • 50
  • 48
  • 43
  • 39
  • 39
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Activation of the Intracellular Renin-Angiotensin System in Cardiac Fibroblasts by High Glucose: Role in Extracellular Matrix Production

Singh, Vivek, Baker, Kenneth M., Kumar, Rajesh 01 April 2008 (has links)
The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-β and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions.
122

Mechanisms of action of transforming growth factor beta and activin in haematopoietic cells

Valderrama-Carvajal, Hector F. January 2007 (has links)
No description available.
123

Characterization of Dante, a novel member of the DANCerberus family TGF-[beta] inhibitors

Popescu, Olivia January 2003 (has links)
No description available.
124

Insights into the Activin Class: Mechanisms of Receptor Assembly and Specificity

Goebel, Erich J. 04 October 2021 (has links)
No description available.
125

Glucocorticoid-transforming growth factor-beta crosstalk contributes to the low adipogenic capacity of human visceral adipose stem cells

Pickering, Richard Taylor 01 November 2017 (has links)
Visceral adipose tissue (AT) mass increases risk for cardiovascular disease and diabetes. Glucocorticoids (GCs) cause preferential expansion of visceral compared to subcutaneous AT through poorly understood mechanisms. GCs are necessary for adipogenesis, the differentiation of adipose stem cells (ASCs) to mature adipocytes. However, this process may be impaired in visceral depots. Insufficient adipogenesis can lead to excessive hypertrophy of existing adipocytes. This hypertrophic expansion increases cell death and inflammation, driving AT dysfunction. To better understand the genes and pathways by which high GCs cause preferential expansion of visceral fat we performed transcriptomic profiling (microarray) on paired samples of visceral (Omental, Om) and abdominal subcutaneous (Abdsc) AT explants cultured with the GC receptor agonist, dexamethasone (Dex), for 7 days. Gene set enrichment analysis showed the transforming growth factor beta (TGFβ) signaling pathway, most notably the secreted anti-adipogenic factors, TGFβ and activin A, was highly enriched in Om and suppressed less by Dex. We hypothesized that Om AT and ASCs secrete factors that inhibit adipogenesis in an autocrine/paracrine manner. Conditioned media (CM) from Om tissue and ASCs suppressed differentiation by 70-80% compared to control; Dex attenuated this anti-adipogenic effect. Both TGFβ and activin A levels were 4-5 fold higher in CM from Om compared to Abdsc ASCs. Both factors signal via cell surface receptors that increase SMAD2 phosphorylation (P-SMAD2), basal levels of which were 3-4 fold higher in Om ASCs. Additionally, CM from Om ASCs increased P-SMAD2. siRNA mediated knockdown of activin A improved differentiation of Om ASCs, but did not reach levels observed in Abdsc. Blocking TGFβ and activin A signaling using SB431542 robustly increased adipogenesis of Om ASCs and prevented the anti-adipogenic effect of CM. GCs decreased production of TGFβ and activin A, but both remained higher in OmCM. Overnight Dex treatment decreased P-SMAD2 and increased the expression of the TGFβ co-receptor, TGFBR3, which decreases TGFβ signaling, in Abdsc ASCs. GCs failed to decrease P-SMAD2 and increased TGFBR3 in Om ASCs only at high concentrations. Taken together, these data implicate GC-TGFβ crosstalk as a determinant of depot differences in adipogenic capacity and hypertrophic vs. healthy hyperplastic expansion of AT. / 2019-11-01T00:00:00Z
126

Transforming growth factor-beta effects on glioblastoma cells: Morphological changes and stimulation of tenascin synthesis

Myeroff, Lois Lemmermann January 1990 (has links)
No description available.
127

Structural and biochemical studies on ligands and antagonists within the transforming growth factor ß family

Walker, Ryan G. 10 October 2016 (has links)
No description available.
128

A differential equation model of Ets2 driven bistability of TFG-beta concentration

Young, Alexander L. 25 July 2011 (has links)
No description available.
129

TGFβ Causes Postoperative Natural Killer Cell Paralysis Through mTOR Inhibition

Market, Marisa Rae 04 September 2020 (has links)
Background: Life-prolonging tumour removal surgery is associated with increased metastasis and disease recurrence. Natural Killer (NK) cells are critical for the anti-tumour immune response. Postoperatively, NK cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed and this dysfunction has been linked to increased metastases/poor patient outcomes. NK cell activity depends on the integration of signals through receptors and can be modulated by soluble factors, including transforming growth factor- beta (TGFβ). The postoperative period is characterized by the expansion of myeloid-derived suppressor cells (sxMDSCs), which inhibit NK cell effector functions. I hypothesize that impaired NK cell IFNγ production is due to altered signaling pathways caused by sxMDSC-derived TGFβ. Methods: Postoperative changes in NK cell receptor expression, receptor-dependent phosphorylation of downstream targets, and rIL-2/12-stimulated IFNγ production were assessed using newly developed whole blood assays utilizing peripheral blood samples from cancer surgery patients. Isolated healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma or isolated sxMDSCs and NK cell phenotype and function were assessed. NK cells were also cultured with plasma in the presence/absence of a TGFβ blocking monoclonal antibody (mAb) or a TGFβ RI small molecule inhibitor (smi). Single-cell RNA-sequencing was performed on six colorectal cancer surgery patients at baseline and on POD1. S6 phosphorylation was used as a proxy for mammalian target of rapamycin complex (mTORC) 1 activity to investigate the mechanism of TGFβ-mediated NK cell dysfunction. Results: Intracellular NK cell IFNγ, activating receptors CD132 (IL-2R), CD212 (IL-12R), NKG2D, and DNAM-1, and the phosphorylation of downstream targets STAT5, STAT4, p38 MAPK, and S6 were significantly reduced on POD1. TGFβ was increased in patient plasma on POD1. The dysfunctional phenotype could be phenocopied in healthy NK cells through the addition of rTGFβ1 or by incubation with POD1 plasma. This dysfunctional phenotype could be prevented with the addition of an anti-TGFβ mAb or a TGFβ RI smi in culture. RNA-sequencing revealed a reduction in transcripts associated with mTOR effector functions, suggesting an impairment in mTOR. S6 phosphorylation was maintained with the addition of TGFβ-specific therapies. The hyporesponsive NK cell phenotype was reproduced upon culture of healthy NK cells with sxMDSCs and sxMDSCs were shown to produce soluble TGFβ in culture. Conclusion: Surgically stressed NK cells display a dysfunctional phenotype, which could be prevented in vitro through the addition of TGFβ-specific blocking therapies. sxMDSCs produced TGFβ and co- incubation induced dysfunction in healthy NK cells. The recovery of impaired S6 phosphorylation with TGFβ-specific therapies suggests that TGFβ is inducing NK cell dysfunction via inhibition of mTORC1 activity. The perioperative period of immunosuppression presents a window of opportunity for novel therapeutics to prevent metastases and cancer recurrence among cancer surgery patients.
130

Dissection of TGF-beta/Smads in the renal inflammation and fibrosis. / 转化生长因子/Smads信号蛋白在肾脏炎症和纤维化中的作用 / CUHK electronic theses & dissertations collection / Zhuan hua sheng zhang yin zi/Smads xin hao dan bai zai shen zang yan zheng he xian wei hua zhong de zuo yong

January 2012 (has links)
目的: 转化生长因子-1(TGF-β1)通过与II型受体结合而引起I型受体活化,进一步激活其下游信号分子蛋白Smad2 和Smad3,它们与Smad4(Co-Smad)结合后形成Smad复合体并发生核转移,从而发挥广泛的生物学效应。同时,整个TGF-β信号通路又受到其抑制因子Smad7的负反馈调节。研究结果显示Smad3是肾脏炎症和纤维化中重要的致病分子,相反,Smad7在多种肾脏疾病中起保护作用。然而,由于转化生长因子II型受体(TβRII),Smad2 或Smad4基因敲除的小鼠无法存活,这些分子在TGF-β1介导的肾脏炎症和纤维化中的功能尚未见报道。因此,本研究旨在剖析TβRII、Smad2 和Smad4 在肾脏疾病发生发展中的作用及机制。 / 方法:本研究利用Cre/LoxP系统分别靶向敲除小鼠肾小管上皮细胞的TβRII、Smad2 或者Smad4,通过结扎小鼠单侧输尿管建立梗阻性肾病模型,观察这些分子对肾脏炎症和纤维化的影响,并用体外实验进行验证。具体实验结果请参见本论文第III,IV, V章。 / 结果:通过分析,本论文取得以下新的发现: / (1) TβRII在TGF-β1介导的肾脏炎症和纤维化的双向调节中起到了决定性的作用:研究结果显示条件性敲除TβRII明显抑制TGF-β/Smad3介导的肾脏纤维化,同时增强NF-κB引起的肾脏炎症反应。由此可见,TRII不仅仅是TGF-β/Smad信号通路的启动因子,更决定了TGF-β1对肾脏炎症和纤维化的双向性调节。(参见第III章) / (2)尽管Smad2和Smad3结构相似并共同介导了TGF-β1的生物学效应,本研究意外发现Smad2可反向调节Smad3引起的纤维化。体内和体外实验共同证实,敲除Smad2基因增强了Smad3的磷酸化,核转位及其转录子活性,并能促进Smad3与I型胶原转录子的结合,进而加重肾脏纤维化(参见第IV章)。 / (3)我们还发现Smad4不仅作为TGF-β/Smad信号通路的共有蛋白,它在TGF-β1介导肾脏炎症和纤维化中起到了重要的双向性调节作用:条件敲除Smad4显著降低了Smad7对NF-κB介导肾脏炎症的抑制作用,同时在转录水平(而非磷酸化水平)抑制Smad3的功能,从而减轻纤维化。(参见第V章) / 结论:TβRII和Smad4 在TGF-β1介导肾脏炎症和纤维化中起到了重要的双向性作用;Smad2通过抑制Smad3信号传导和功能,在肾脏纤维化中起保护作用。 / Objectives: TGF-β1 binds its receptor II (TβRII) and then activates receptor I to initiate the downstream Smad signaling, called Smad2 and Smad3 which bind a common Smad4 to form the Smad complex and then translocate to nucleus to exert its biological activities. This process is negatively regulated by an inhibitory Smad7. While the pathogenic role of Smad3 and the protective role of Smad7 in renal fibrosis and inflammation are clearly understood, the functional role of TβRII, Smad2 and Smad4 in kidney diseases remains largely unexplored due to the lethality of these knockout mice. Therefore, the aim of present study is to dissect the functional role of these TGF-β/Smad signaling molecules in renal inflammation and fibrosis. / Methods: Kidney conditional knockout (KO) mice for TβRII, Smad2 and Smad4 were generated by crossing the FloxFlox mice with the kidney specific promoter driven Cre (KspCre) mice, in which TβRII, Smad2 or Smad4 were specifically deleted from the kidney tubular epithelial cells (TEC) respectively. Then, a well-characterized progressive renal inflammation and fibrosis mouse model of Unilateral ureteral obstructive (UUO) nephropathy was induced in these conditional KO mice and the specific roles for TβRII, Smad2, and Smad4 in renal inflammation and fibrosis were investigated in vivo and in vitro as described in the Chapter III, IV and V of this thesis. / Results: There were several novel findings through this thesis: / 1. TGF-β1 signals through its TβRII to diversely regulate renal fibrosis and inflammation. We found that disrupted TRII suppressed Smad3-dependent renal fibrosis while enhancing NF-κB-driven renal inflammation. Thus, TβRII not only acts as a binding receptor for initiating the TGF-β signaling, but also determines the diverse role of TGF-β1 in inflammation and fibrosis, which was described in the Chapter III. / 2. As shown in the Chapter IV, an unexpected finding from this thesis was that although Smad2 and Smad3 were homologically similar and bound together in response to TGF-β1 stimulation, Smad2 counter-regulated Smad3-mediated renal fibrosis. This was evidenced by the findings that conditional deletion of Smad2 enhanced Smad3 signaling including phosphorylation, nuclear translocation, the Smad3 responsive promoter activity, and the binding of Smad3 to Col1A2 promoter. Thus, disrupted Smad2 from the kidney significantly enhanced Smad3-mediated renal fibrosis in the UUO kidney and in cultured TEC. / 3. Finally, we also showed that that Smad4 acted not only as a common Smad in TGF-β signaling, but exerted its regulatory role in determining the diverse role of TGF-β1 in renal inflammation and fibrosis. Disruption of Smad4 significantly enhanced renal inflammation by impairing inhibitory effect of Smad7 on NF-κB-driven renal inflammation. In contrast, disrupted Smad4 inhibited renal fibrosis by blocking Smad3 functional activity without influencing Smad3 signaling. Because deletion of Smad4 inhibited TGF-β1-induced Smad3 responsive promoter activity and the binding of Smad3 to the Col1A2 promoter without altering the phosphorylation and nuclear translocation of Smad3 (Chapter V). / Conclusions: TβRII and Smad4 may function as key regulators of TGF-β signaling and diversely regulate the renal inflammation and fibrosis. Smad2 plays a protective role in renal fibrosis by counter-regulating Smad3 signaling. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Meng, Xiaoming. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 202-231). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Declaration --- p.viii / Acknowledgement --- p.ix / Table of Contents --- p.xii / List of Abbreviations --- p.xxvii / List of Figures/Tables --- p.xxix / Chapter CHAPTER I --- INTRODUCTION --- p.1 / Chapter 1.1 --- TGF-β signaling pathway --- p.2 / Chapter 1.1.1 --- TGF-β superfamily --- p.2 / Chapter 1.1.2 --- TGF-β signaling transduction --- p.3 / Chapter 1.1.2.1 --- Smad-dependent TGF-β signaling --- p.4 / Chapter 1.1.2.2 --- Smad-independent TGF-β signaling --- p.10 / Chapter 1.2 --- Chronic Kideny disease (CKD) --- p.12 / Chapter 1.2.1 --- Epidemiology of CKD --- p.12 / Chapter 1.2.2 --- Pathophysiology of CKD --- p.12 / Chapter 1.3 --- TGF-β signaling in renal diseases --- p.13 / Chapter 1.3.1 --- Role of TGF-β1 in renal diseases --- p.13 / Chapter 1.3.2 --- Potential role of TβRII in renal diseases --- p.15 / Chapter 1.3.3 --- Potential role of Smad2 in renal diseases --- p.17 / Chapter 1.3.4 --- Potential role of Smad4 in renal diseases --- p.20 / Chapter 1.3.5 --- Role of Smad7 in renal diseases --- p.23 / Chapter 1.3.6 --- Role of Smad-independent TGF-β signaling in renal disease --- p.24 / Chapter CHAPTER II --- MATERIALS AND METHODS --- p.26 / Chapter 2.1 --- MATERIALS --- p.27 / Chapter 2.1.1 --- Reagents and Equipments --- p.27 / Chapter 2.1.1.1 --- General reagents and equipments for cell culture --- p.27 / Chapter 2.1.1.2 --- General reagents and equipments for real-time RT-PCR --- p.28 / Chapter 2.1.1.3 --- General reagents and equipments for Masson Trichrome Staining --- p.28 / Chapter 2.1.1.4 --- General reagents and equipments for Immunohistochemistry --- p.29 / Chapter 2.1.1.5 --- General reagents and equipments for Immunofluorescence --- p.29 / Chapter 2.1.1.6 --- General reagents and equipments for Western Blot --- p.29 / Chapter 2.1.1.7 --- General reagents and equipments for Promoter assay --- p.31 / Chapter 2.1.1.8 --- General reagents and equipments for ChIP assay --- p.32 / Chapter 2.1.2 --- Buffers --- p.32 / Chapter 2.1.2.1 --- Buffers for Immunohistochemistry --- p.32 / Chapter 2.1.2.2 --- Buffers for Western blot --- p.35 / Chapter 2.1.3 --- Sequences of Primers and siRNAs --- p.40 / Chapter 2.1.4 --- Antibodies --- p.42 / Chapter 2.2 --- METHODS --- p.44 / Chapter 2.2.1 --- Animal model of Unilateral Ureteral Obstruction (UUO) --- p.44 / Chapter 2.2.2 --- Cell culture --- p.44 / Chapter 2.2.2.1 --- NRK52E cell line --- p.44 / Chapter 2.2.2.2 --- Smad2 WT/KO mouse embryonic fibroblasts (MEFs) --- p.45 / Chapter 2.2.2.3 --- Primary culture of kidney fibroblasts --- p.45 / Chapter 2.2.2.4 --- Primary culture of peritoneal macrophages --- p.46 / Chapter 2.2.3 --- PAS staining --- p.47 / Chapter 2.2.3.1 --- Tissue Handling and Fixation --- p.47 / Chapter 2.2.3.2 --- Tissue embedding and sectioning --- p.47 / Chapter 2.2.3.3 --- Preparation of Paraffin Tissue Sections for PAS staining --- p.48 / Chapter 2.2.3.4 --- PAS staining --- p.48 / Chapter 2.2.4 --- Real-time RT-PCR --- p.48 / Chapter 2.2.4.1 --- Total RNA isolation --- p.48 / Chapter 2.2.4.2 --- Reverse Transcription --- p.49 / Chapter 2.2.4.3 --- Real-time PCR --- p.50 / Chapter 2.2.4.4 --- Analysis of Real-time PCR --- p.50 / Chapter 2.2.5 --- Masson Trichrome Staining --- p.51 / Chapter 2.2.6 --- Immunohistochemistry --- p.52 / Chapter 2.2.6.1 --- Preparation of Paraffin Tissue Sections for IHC --- p.52 / Chapter 2.2.6.2 --- Antigen-Antibody Reaction --- p.52 / Chapter 2.2.6.3 --- Signal Detection --- p.53 / Chapter 2.2.6.4 --- Semi-quantification of Immunohistochemistry --- p.53 / Chapter 2.2.7 --- Immunofluorescence --- p.54 / Chapter 2.2.8 --- Western blot analysis --- p.54 / Chapter 2.2.8.1 --- Protein preparation --- p.55 / Chapter 2.2.8.2 --- SDS-PAGE --- p.56 / Chapter 2.2.8.3 --- Transmembrane of protein --- p.56 / Chapter 2.2.8.4 --- Incubation of first and second antibody --- p.57 / Chapter 2.2.8.5 --- Signal capture and analysis --- p.57 / Chapter 2.2.8.6 --- Stripping --- p.57 / Chapter 2.2.9 --- Promoter assay --- p.58 / Chapter 2.2.10 --- ChIP assay --- p.61 / Chapter 2.2.11 --- Statistical analysis --- p.62 / Chapter CHAPTER III --- THE DIVERSE ROLE OF TGF-BETA RECEPTOR II IN RENAL INFLAMMATION AND FIBROSIS --- p.63 / Chapter 3.1 --- INTRODUCTION --- p.64 / Chapter 3.2 --- AIMS --- p.64 / Chapter 3.3 --- MATERIALS AND METHODS --- p.66 / Chapter 3.3.1 --- Generation and characterization of TβRII conditional Knockout mice --- p.66 / Chapter 3.3.2 --- Generation and characterization of TβRII disrupted tubular epithelial cell line (NRK52E) and kidney interstitial fibroblasts --- p.67 / Chapter 3.3.3 --- Animal model of Unilateral Ureteral Obstruction --- p.67 / Chapter 3.3.4 --- Cell culture --- p.67 / Chapter 3.3.5 --- Real-time RT-PCR --- p.68 / Chapter 3.3.6 --- Masson Trichrome Staining --- p.68 / Chapter 3.3.7 --- Immunohistochemistry --- p.68 / Chapter 3.3.8 --- PAS staining --- p.69 / Chapter 3.3.9 --- Immunofluorescence --- p.69 / Chapter 3.3.10 --- Western blot analysis --- p.70 / Chapter 3.3.11 --- Promoter assay --- p.70 / Chapter 3.3.12 --- Statistical analysis --- p.70 / Chapter 3.4 --- RESULTS --- p.71 / Chapter 3.4.1 --- Characterization of TβRII conditional Knockout mice and TβRII disrupted cells --- p.71 / Chapter 3.4.2 --- Disruption of TβRII suppresses renal interstitial damage in the UUO kidney --- p.72 / Chapter 3.4.3 --- Disruption of TβRII suppresses renal fibrosis in UUO kidney and TGF-β1-induced fibrotic response in vitro --- p.76 / Chapter 3.4.3.1 --- Conditional knockout of TβRII from the kidney decreases the collagen I level in UUO kidney --- p.76 / Chapter 3.4.3.2 --- Disruption of TβRII inhibits TGF-β1 induced collagen I level in vitro --- p.79 / Chapter 3.4.3.3 --- Conditional knockout of TβRII from the kidney decreases the α-SMA positive cells infiltration in vivo --- p.81 / Chapter 3.4.3.4 --- Disruption of TβRII inhibits TGF-β1-induced α-SMA expression in vitro --- p.83 / Chapter 3.4.3.5 --- Conditional knockout of TβRII from the kidney decreases the FN level in UUO nephropathy --- p.85 / Chapter 3.4.3.6 --- Disruption of TβRII decreases TGF-β1-induced FN expression in vitro --- p.87 / Chapter 3.4.4 --- Disruption of TβRII impairs the TGF-β/Smad signaling in vivo in the UUO kidney and in vitro in TGF-β1 treated tubular epithelial cells and kidney fibroblasts --- p.89 / Chapter 3.4.4.1 --- Conditional knockout of TβRII decreases the UUO induced TGF-β1 expression in vivo and the TGF-β1 auto-induction in vitro --- p.89 / Chapter 3.4.4.2 --- Disrupted TβRII decreases CTGF level in the UUO nephropathy in vivo and the TGF-β1 induced CTGF mRNA level in vitro --- p.91 / Chapter 3.4.4.3 --- Conditional knockout of TβRII impairs the Smad3 signaling in the injured kidney --- p.93 / Chapter 3.4.4.4 --- Disrupted TβRII inhibits TGF-β1-induced Smad3 phosphorylation, P-Smad3 nuclear translocation and Smad3 responsive promoter activity in vitro --- p.95 / Chapter 3.4.4.5 --- Conditional knockout of TβRII doesn’t alter the activation of ERK and P38 signaling in the UUO kidney --- p.97 / Chapter 3.4.4.6 --- Disrupted TβRII inhibits TGF-β1-induced ERK and P38 phosphorylation in vitro --- p.99 / Chapter 3.4.5 --- Disruption of TβRII enhances inflammatory cytokines expression in the UUO kidney and impairs the anti-inflammatory effect of TGF-β1 in response to IL-1β triggered inflammatory response in the TEC cells --- p.101 / Chapter 3.4.5.1 --- Conditional knockout of TβRII increases the TNF-α expression in the UUO nephropathy --- p.101 / Chapter 3.4.5.2 --- Conditional knockout of TβRII increases the IL-1β expression in the UUO nephropathy --- p.103 / Chapter 3.4.5.3 --- Conditional knockout of TβRII doesn’t enhance the MCP-1 expression and macrophages infiltration in the UUO nephropathy --- p.104 / Chapter 3.4.5.4 --- Disruption of TβRII in TECs decreases the anti-inflammatory effect of TGF-β1 in response to IL-1β --- p.106 / Chapter 3.4.6 --- Disruption of TβRII enhances NFκB activation in vivo and in vitro --- p.108 / Chapter 3.5 --- DISCUSSION --- p.110 / Chapter 3.6 --- CONCLUSION --- p.114 / Chapter CHAPTER IV --- Smad2 protects against TGF-β/Smad3 mediated renal fibrosis --- p.115 / Chapter 4.1 --- INTRODUCTION --- p.116 / Chapter 4.2 --- AIMS --- p.117 / Chapter 4.3 --- MATERIALS AND METHODS --- p.117 / Chapter 4.3.1 --- Generation and characterization of Smad2 conditional Knockout mice --- p.117 / Chapter 4.3.2 --- Generation and characterization of Smad2 KO MEFs and Smad2 knockdown/overexpression tubular epithelial cell line (NRK52E) --- p.118 / Chapter 4.3.3 --- Animal model of Unilateral Ureteral Obstruction --- p.118 / Chapter 4.3.4 --- Cell culture --- p.118 / Chapter 4.3.5 --- Real-time RT-PCR --- p.119 / Chapter 4.3.6 --- Western blot analysis --- p.119 / Chapter 4.3.7 --- Immunohistochemistry --- p.119 / Chapter 4.3.8 --- Masson Trichrome Staining --- p.119 / Chapter 4.3.9 --- Immunofluorescence --- p.120 / Chapter 4.3.10 --- Promoter assay --- p.120 / Chapter 4.3.11 --- ChIP assay --- p.120 / Chapter 4.3.12 --- Statistical analysis --- p.120 / Chapter 4.4 --- RESULTS --- p.121 / Chapter 4.4.1 --- Characterization of Smad2 disrupted mice and cells --- p.121 / Chapter 4.4.1.1 --- Characterization of Smad2 conditional Knockout mice --- p.121 / Chapter 4.4.1.2 --- Characterization of Smad2 knockout MEFs, Smad2 knockdown/overexpression TECs --- p.123 / Chapter 4.4.2 --- Disruption of Smad2 further enhances renal fibrosis in vivo and in vitro --- p.124 / Chapter 4.4.2.1 --- Conditional knockout of Smad2 increases total collagen deposition and Col.I level in the UUO kidney --- p.124 / Chapter 4.4.2.2 --- Disruption of Smad2 in MEFs and TECs increases Col.I production in a time- and dosage-dependent manner in response to TGF-β1 --- p.126 / Chapter 4.4.2.3 --- Conditional knockout of Smad2 increases Col.III level in the UUO kidney --- p.128 / Chapter 4.4.2.4 --- Disruption of Smad2 in MEFs and TECs increases Col.III production in a time- and dosage-dependent manner in response to TGF-β1 --- p.130 / Chapter 4.4.3 --- Disruption of Smad2 further enhances renal fibrosis by suppressing the collagen degradation system in vivo and in vitro --- p.132 / Chapter 4.4.3.1 --- Conditional knockout of Smad2 inhibits the MMP2 mRNA while enhances TIMP-1 production in UUO kidney --- p.132 / Chapter 4.4.3.2 --- Disruption of Smad2 in MEFs and TECs decreases the MMP2 level while enhances TIMP-1 production in response to TGF-β1 --- p.133 / Chapter 4.4.4 --- Disruption of Smad2 further increases renal fibrosis by increasing TGF-β1 auto-induction and CTGF level in vivo and in vitro --- p.135 / Chapter 4.4.4.1 --- Disruption of Smad2 increases TGF-β1 auto-induction in vivo and in vitro --- p.135 / Chapter 4.4.4.2 --- Disruption of Smad2 increases CTGF synthesis in vivo and in vitro --- p.137 / Chapter 4.4.5 --- Disruption of Smad2 further increases renal fibrosis by enhancing Smad3 signaling in vivo and in vitro --- p.139 / Chapter 4.4.5.1 --- Conditional knockout of Smad2 further enhances Smad3 phosphorylation and nuclear translocation --- p.139 / Chapter 4.4.5.2 --- Disruption of Smad2 in MEFs and TECs further enhances Smad3 phosphorylation, nuclear translocation, Smad3 responsive promoter activity and the binding to the Col1A2 promoter --- p.141 / Chapter 4.4.6 --- Overexpression of Smad2 suppresses Smad3 signaling therefore ameliorates the TGF-β1-induced fibrotic response in TECs --- p.144 / Chapter 4.4.6.1 --- Overexpression of Smad2 ameliorates the TGF-β1- induced fibrotic response in TECs --- p.144 / Chapter 4.4.6.2 --- Overexpression of Smad2 suppresses Smad3 phosphorylation --- p.146 / Chapter 4.5 --- DISCUSSION --- p.147 / Chapter 4.6 --- CONCLUSION --- p.150 / Chapter CHAPTER V --- THE DISTINCT ROLE OF SMAD4 IN RENAL INFLAMMATION AND FIBROSIS --- p.151 / Chapter 5.1 --- INTRODUCTION --- p.152 / Chapter 5.2 --- AIMS --- p.152 / Chapter 5.3 --- MATERIALS AND METHODS --- p.153 / Chapter 5.3.1 --- Generation and characterization of Smad4 conditional Knockout mice --- p.153 / Chapter 5.3.2 --- Generation and characterization of Smad4 disrupted kidney interstitial fibroblasts and peritoneal macrophages --- p.153 / Chapter 5.3.3 --- Animal model of Unilateral Ureteral Obstruction (UUO) --- p.154 / Chapter 5.3.4 --- Cell culture --- p.154 / Chapter 5.3.5 --- Real-time RT-PCR --- p.155 / Chapter 5.3.6 --- Western blot analysis --- p.155 / Chapter 5.3.7 --- Immunohistochemistry --- p.155 / Chapter 5.3.8 --- Masson Trichrome Staining --- p.155 / Chapter 5.3.9 --- Promoter assay --- p.156 / Chapter 5.3.10 --- ChIP assay --- p.156 / Chapter 5.3.11 --- Statistical analysis --- p.156 / Chapter 5.4 --- RESULTS --- p.157 / Chapter 5.4.1 --- Characterization of Smad4 conditional Knockout mice and Smad4 disrupted cells --- p.157 / Chapter 5.4.2 --- Disruption of Smad4 suppresses renal fibrosis in the UUO nephropathy in vivo and TGF-β1-induced fibrotic response in vitro --- p.160 / Chapter 5.4.2.1 --- Conditional knockout of Smad4 from the kidney decreases the total collagen deposition in the UUO nephropathy --- p.160 / Chapter 5.4.2.2 --- Conditional knockout of Smad4 from the kidney decreases the Col.I production in the UUO nephropathy --- p.161 / Chapter 5.4.2.3 --- Disruption of Smad4 inhibits TGF-β1-induced Col.I production in vitro --- p.163 / Chapter 5.4.3 --- Disruption of Smad4 impairs the Smad3 function in vivo and in vitro --- p.164 / Chapter 5.4.3.1 --- Conditional knockout of Smad4 doesn’t decrease Smad3 phosphorylation and P-Smad3 nuclear translocation in vivo and in vitro --- p.164 / Chapter 5.4.3.2 --- Disruption of Smad4 inhibits TGF-β1 induced Smad3 promoter activity and the Smad3 binding to Col1A2 promoter --- p.166 / Chapter 5.4.3.3 --- Disruption of Smad4 has minimal effect on the activation of ERK signaling in vivo and in vitro --- p.167 / Chapter 5.4.4 --- Disruption of Smad4 enhances renal inflammation and impairs the anti-inflammatory effect of TGF-β1 in response to IL-1β triggered inflammatory response in vitro --- p.169 / Chapter 5.4.4.1 --- Conditional knockout of Smad4 increases the inflammatory cells infiltration --- p.169 / Chapter 5.4.4.2 --- Conditional knockout of Smad4 increases the TNFα expression in the UUO nephropathy --- p.171 / Chapter 5.4.4.3 --- Conditional knockout of Smad4 increases the IL-1β expression in the UUO nephropathy --- p.172 / Chapter 5.4.4.4 --- Conditional knockout of Smad4 increases the MCP-1 expression in the UUO nephropathy --- p.173 / Chapter 5.4.4.5 --- Conditional knockout of Smad4 increases the ICAM-1 level in the UUO nephropathy --- p.174 / Chapter 5.4.4.6 --- Time and dosage dependent experiments in response to IL-1β in macrophages --- p.175 / Chapter 5.4.4.7 --- Disruption of Smad4 in macrophages decreases the anti-inflammatory effect of TGF-β1 in response to IL-1β --- p.176 / Chapter 5.4.5 --- Disruption of Smad4 impairs the inhibitory effect of Smad7 on NFκB activation in vivo and in vitro --- p.178 / Chapter 5.4.5.1 --- Conditional knockout of Smad4 largely inhibits Smad7 level in UUO kidney --- p.178 / Chapter 5.4.5.2 --- Conditional knockout of Smad4 suppresses IκBα and further increases NF-κB p65 activation in UUO kidney --- p.180 / Chapter 5.4.5.3 --- Disruption of Smad4 inhibits Smad7 synthesis in macrophages --- p.182 / Chapter 5.4.5.4 --- Conditional knockout of Smad4 impair the inhibition effect of TGF-β1 on the activation of NFκB p65 in macrophages --- p.184 / Chapter 5.5 --- DISCUSSION --- p.186 / Chapter 5.6 --- CONCLUSION --- p.189 / Chapter CHAPTER VI --- SUMMARY AND DISCUSSION OF THE MAJOR FINDINGS --- p.190 / Chapter 6.1 --- SUMMARY AND DISCUSSION --- p.192 / Chapter 6.1.1 --- The diverse role of TβRII in renal inflammation and fibrosis both in vivo and in vitro --- p.192 / Chapter 6.1.2 --- Smad2 protects renal fibrosis by counter-regulating Smad3 signaling --- p.192 / Chapter 6.1.3 --- Disruption of Smad4 increased renal inflammation while suppressed the renal fibrosis in vivo and in vitro --- p.194 / Chapter 6.1.4 --- Comparative analysis of functions and related mechanisms between TβRII and Smad4 in renal disease --- p.195 / Chapter 6.1.5 --- Inadequacies of current work and future plan --- p.197 / Chapter 6.1.6 --- Perspectives (1) : The balance within the TGF-b/Smad signaling may determine the fate of renal diseases --- p.197 / Chapter 6.1.7 --- Perspectives(2):The balance within the TGF-β/Smad signaling may determine the fate of renal diseases --- p.198 / Chapter 6.2 --- CONCLUSION --- p.201 / REFERENCES --- p.202 / PUBLICATION LIST --- p.232 / HONORS AND AWARDS --- p.237

Page generated in 0.0731 seconds