Spelling suggestions: "subject:"transforming growth factors."" "subject:"ransforming growth factors.""
91 |
I. Distribution of transforming growth factor beta 1, TGF receptor II and decorin in the sheep uterus shortly after breedingHolásková, Ida, January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains ix, 144 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 126-144).
|
92 |
MECHANISMS OF TGF BETA-INDUCED INHIBITION OF CD1D-MEDIATED ANTIGEN PRESENTATIONRyan, Jennifer Carrie 18 November 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / CD1d is a cell surface glycolipid that, like Major Histocompatibility Complex (MHC) class I and MHC class II molecules, presents antigen. However, instead of peptides, CD1d presents lipids to Natural Killer (NK) T cells, a subset of T cells that express both NK cell markers and the T cell receptor and produces both T helper (Th) 1 and Th2 cytokines. Our lab focuses on the regulation CD1d-mediated antigen presentation. TGF beta is a known regulator of the immune system, such as controlling MHC class II antigen presentation. Further, TGF beta can activate the mitogen activated protein kinase (MAPK) p38, a known negative regulator of CD1d-mediated antigen presentation. Therefore, we hypothesized that TGF beta would be a negative regulator of CD1d-mediated antigen presentation, and our results showed a decrease in antigen presentation by CD1d in response to TGF beta treatment. However, this inhibition was not through p38 activation, as indicated by the absence of a rescue of CD1d-mediated antigen presentation in, TGF beta-treated, p38 dominant negative-expressing cells. Alternatively, the Smad pathway, the canonical pathway activated by TGF beta, was investigated through a lentivirus shRNA-mediated knockdown of Smad2, Smad3 and Smad4 proteins. Smad2 shRNA-expressing cells showed in an increase in CD1d-mediated antigen presentation, suggesting an inhibitory role for Smad2. In contrast, Smad3 shRNA-expressing cells did not differ from control cells. However, as in the case of Smad2, CD1d+ cells in which Smad4 was knocked down, were substantially better at CD1d-mediated antigen presentation than control cells, suggesting that it also negatively regulates antigen presentation. Overall, these studies demonstrate that the canonical TGF beta/Smad pathway regulates an important part of the host’s innate immune response, vis-à-vis CD1d-mediated antigen presentation.
|
93 |
TGF-[beta] and estrogen signaling interactions in breast cancer /Petrel, Trevor Alan January 2001 (has links)
No description available.
|
94 |
Dissection of TGF-beta/Smads in the renal inflammation and fibrosis. / 转化生长因子/Smads信号蛋白在肾脏炎症和纤维化中的作用 / CUHK electronic theses & dissertations collection / Zhuan hua sheng zhang yin zi/Smads xin hao dan bai zai shen zang yan zheng he xian wei hua zhong de zuo yongJanuary 2012 (has links)
目的: 转化生长因子-1(TGF-β1)通过与II型受体结合而引起I型受体活化,进一步激活其下游信号分子蛋白Smad2 和Smad3,它们与Smad4(Co-Smad)结合后形成Smad复合体并发生核转移,从而发挥广泛的生物学效应。同时,整个TGF-β信号通路又受到其抑制因子Smad7的负反馈调节。研究结果显示Smad3是肾脏炎症和纤维化中重要的致病分子,相反,Smad7在多种肾脏疾病中起保护作用。然而,由于转化生长因子II型受体(TβRII),Smad2 或Smad4基因敲除的小鼠无法存活,这些分子在TGF-β1介导的肾脏炎症和纤维化中的功能尚未见报道。因此,本研究旨在剖析TβRII、Smad2 和Smad4 在肾脏疾病发生发展中的作用及机制。 / 方法:本研究利用Cre/LoxP系统分别靶向敲除小鼠肾小管上皮细胞的TβRII、Smad2 或者Smad4,通过结扎小鼠单侧输尿管建立梗阻性肾病模型,观察这些分子对肾脏炎症和纤维化的影响,并用体外实验进行验证。具体实验结果请参见本论文第III,IV, V章。 / 结果:通过分析,本论文取得以下新的发现: / (1) TβRII在TGF-β1介导的肾脏炎症和纤维化的双向调节中起到了决定性的作用:研究结果显示条件性敲除TβRII明显抑制TGF-β/Smad3介导的肾脏纤维化,同时增强NF-κB引起的肾脏炎症反应。由此可见,TRII不仅仅是TGF-β/Smad信号通路的启动因子,更决定了TGF-β1对肾脏炎症和纤维化的双向性调节。(参见第III章) / (2)尽管Smad2和Smad3结构相似并共同介导了TGF-β1的生物学效应,本研究意外发现Smad2可反向调节Smad3引起的纤维化。体内和体外实验共同证实,敲除Smad2基因增强了Smad3的磷酸化,核转位及其转录子活性,并能促进Smad3与I型胶原转录子的结合,进而加重肾脏纤维化(参见第IV章)。 / (3)我们还发现Smad4不仅作为TGF-β/Smad信号通路的共有蛋白,它在TGF-β1介导肾脏炎症和纤维化中起到了重要的双向性调节作用:条件敲除Smad4显著降低了Smad7对NF-κB介导肾脏炎症的抑制作用,同时在转录水平(而非磷酸化水平)抑制Smad3的功能,从而减轻纤维化。(参见第V章) / 结论:TβRII和Smad4 在TGF-β1介导肾脏炎症和纤维化中起到了重要的双向性作用;Smad2通过抑制Smad3信号传导和功能,在肾脏纤维化中起保护作用。 / Objectives: TGF-β1 binds its receptor II (TβRII) and then activates receptor I to initiate the downstream Smad signaling, called Smad2 and Smad3 which bind a common Smad4 to form the Smad complex and then translocate to nucleus to exert its biological activities. This process is negatively regulated by an inhibitory Smad7. While the pathogenic role of Smad3 and the protective role of Smad7 in renal fibrosis and inflammation are clearly understood, the functional role of TβRII, Smad2 and Smad4 in kidney diseases remains largely unexplored due to the lethality of these knockout mice. Therefore, the aim of present study is to dissect the functional role of these TGF-β/Smad signaling molecules in renal inflammation and fibrosis. / Methods: Kidney conditional knockout (KO) mice for TβRII, Smad2 and Smad4 were generated by crossing the FloxFlox mice with the kidney specific promoter driven Cre (KspCre) mice, in which TβRII, Smad2 or Smad4 were specifically deleted from the kidney tubular epithelial cells (TEC) respectively. Then, a well-characterized progressive renal inflammation and fibrosis mouse model of Unilateral ureteral obstructive (UUO) nephropathy was induced in these conditional KO mice and the specific roles for TβRII, Smad2, and Smad4 in renal inflammation and fibrosis were investigated in vivo and in vitro as described in the Chapter III, IV and V of this thesis. / Results: There were several novel findings through this thesis: / 1. TGF-β1 signals through its TβRII to diversely regulate renal fibrosis and inflammation. We found that disrupted TRII suppressed Smad3-dependent renal fibrosis while enhancing NF-κB-driven renal inflammation. Thus, TβRII not only acts as a binding receptor for initiating the TGF-β signaling, but also determines the diverse role of TGF-β1 in inflammation and fibrosis, which was described in the Chapter III. / 2. As shown in the Chapter IV, an unexpected finding from this thesis was that although Smad2 and Smad3 were homologically similar and bound together in response to TGF-β1 stimulation, Smad2 counter-regulated Smad3-mediated renal fibrosis. This was evidenced by the findings that conditional deletion of Smad2 enhanced Smad3 signaling including phosphorylation, nuclear translocation, the Smad3 responsive promoter activity, and the binding of Smad3 to Col1A2 promoter. Thus, disrupted Smad2 from the kidney significantly enhanced Smad3-mediated renal fibrosis in the UUO kidney and in cultured TEC. / 3. Finally, we also showed that that Smad4 acted not only as a common Smad in TGF-β signaling, but exerted its regulatory role in determining the diverse role of TGF-β1 in renal inflammation and fibrosis. Disruption of Smad4 significantly enhanced renal inflammation by impairing inhibitory effect of Smad7 on NF-κB-driven renal inflammation. In contrast, disrupted Smad4 inhibited renal fibrosis by blocking Smad3 functional activity without influencing Smad3 signaling. Because deletion of Smad4 inhibited TGF-β1-induced Smad3 responsive promoter activity and the binding of Smad3 to the Col1A2 promoter without altering the phosphorylation and nuclear translocation of Smad3 (Chapter V). / Conclusions: TβRII and Smad4 may function as key regulators of TGF-β signaling and diversely regulate the renal inflammation and fibrosis. Smad2 plays a protective role in renal fibrosis by counter-regulating Smad3 signaling. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Meng, Xiaoming. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 202-231). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Declaration --- p.viii / Acknowledgement --- p.ix / Table of Contents --- p.xii / List of Abbreviations --- p.xxvii / List of Figures/Tables --- p.xxix / Chapter CHAPTER I --- INTRODUCTION --- p.1 / Chapter 1.1 --- TGF-β signaling pathway --- p.2 / Chapter 1.1.1 --- TGF-β superfamily --- p.2 / Chapter 1.1.2 --- TGF-β signaling transduction --- p.3 / Chapter 1.1.2.1 --- Smad-dependent TGF-β signaling --- p.4 / Chapter 1.1.2.2 --- Smad-independent TGF-β signaling --- p.10 / Chapter 1.2 --- Chronic Kideny disease (CKD) --- p.12 / Chapter 1.2.1 --- Epidemiology of CKD --- p.12 / Chapter 1.2.2 --- Pathophysiology of CKD --- p.12 / Chapter 1.3 --- TGF-β signaling in renal diseases --- p.13 / Chapter 1.3.1 --- Role of TGF-β1 in renal diseases --- p.13 / Chapter 1.3.2 --- Potential role of TβRII in renal diseases --- p.15 / Chapter 1.3.3 --- Potential role of Smad2 in renal diseases --- p.17 / Chapter 1.3.4 --- Potential role of Smad4 in renal diseases --- p.20 / Chapter 1.3.5 --- Role of Smad7 in renal diseases --- p.23 / Chapter 1.3.6 --- Role of Smad-independent TGF-β signaling in renal disease --- p.24 / Chapter CHAPTER II --- MATERIALS AND METHODS --- p.26 / Chapter 2.1 --- MATERIALS --- p.27 / Chapter 2.1.1 --- Reagents and Equipments --- p.27 / Chapter 2.1.1.1 --- General reagents and equipments for cell culture --- p.27 / Chapter 2.1.1.2 --- General reagents and equipments for real-time RT-PCR --- p.28 / Chapter 2.1.1.3 --- General reagents and equipments for Masson Trichrome Staining --- p.28 / Chapter 2.1.1.4 --- General reagents and equipments for Immunohistochemistry --- p.29 / Chapter 2.1.1.5 --- General reagents and equipments for Immunofluorescence --- p.29 / Chapter 2.1.1.6 --- General reagents and equipments for Western Blot --- p.29 / Chapter 2.1.1.7 --- General reagents and equipments for Promoter assay --- p.31 / Chapter 2.1.1.8 --- General reagents and equipments for ChIP assay --- p.32 / Chapter 2.1.2 --- Buffers --- p.32 / Chapter 2.1.2.1 --- Buffers for Immunohistochemistry --- p.32 / Chapter 2.1.2.2 --- Buffers for Western blot --- p.35 / Chapter 2.1.3 --- Sequences of Primers and siRNAs --- p.40 / Chapter 2.1.4 --- Antibodies --- p.42 / Chapter 2.2 --- METHODS --- p.44 / Chapter 2.2.1 --- Animal model of Unilateral Ureteral Obstruction (UUO) --- p.44 / Chapter 2.2.2 --- Cell culture --- p.44 / Chapter 2.2.2.1 --- NRK52E cell line --- p.44 / Chapter 2.2.2.2 --- Smad2 WT/KO mouse embryonic fibroblasts (MEFs) --- p.45 / Chapter 2.2.2.3 --- Primary culture of kidney fibroblasts --- p.45 / Chapter 2.2.2.4 --- Primary culture of peritoneal macrophages --- p.46 / Chapter 2.2.3 --- PAS staining --- p.47 / Chapter 2.2.3.1 --- Tissue Handling and Fixation --- p.47 / Chapter 2.2.3.2 --- Tissue embedding and sectioning --- p.47 / Chapter 2.2.3.3 --- Preparation of Paraffin Tissue Sections for PAS staining --- p.48 / Chapter 2.2.3.4 --- PAS staining --- p.48 / Chapter 2.2.4 --- Real-time RT-PCR --- p.48 / Chapter 2.2.4.1 --- Total RNA isolation --- p.48 / Chapter 2.2.4.2 --- Reverse Transcription --- p.49 / Chapter 2.2.4.3 --- Real-time PCR --- p.50 / Chapter 2.2.4.4 --- Analysis of Real-time PCR --- p.50 / Chapter 2.2.5 --- Masson Trichrome Staining --- p.51 / Chapter 2.2.6 --- Immunohistochemistry --- p.52 / Chapter 2.2.6.1 --- Preparation of Paraffin Tissue Sections for IHC --- p.52 / Chapter 2.2.6.2 --- Antigen-Antibody Reaction --- p.52 / Chapter 2.2.6.3 --- Signal Detection --- p.53 / Chapter 2.2.6.4 --- Semi-quantification of Immunohistochemistry --- p.53 / Chapter 2.2.7 --- Immunofluorescence --- p.54 / Chapter 2.2.8 --- Western blot analysis --- p.54 / Chapter 2.2.8.1 --- Protein preparation --- p.55 / Chapter 2.2.8.2 --- SDS-PAGE --- p.56 / Chapter 2.2.8.3 --- Transmembrane of protein --- p.56 / Chapter 2.2.8.4 --- Incubation of first and second antibody --- p.57 / Chapter 2.2.8.5 --- Signal capture and analysis --- p.57 / Chapter 2.2.8.6 --- Stripping --- p.57 / Chapter 2.2.9 --- Promoter assay --- p.58 / Chapter 2.2.10 --- ChIP assay --- p.61 / Chapter 2.2.11 --- Statistical analysis --- p.62 / Chapter CHAPTER III --- THE DIVERSE ROLE OF TGF-BETA RECEPTOR II IN RENAL INFLAMMATION AND FIBROSIS --- p.63 / Chapter 3.1 --- INTRODUCTION --- p.64 / Chapter 3.2 --- AIMS --- p.64 / Chapter 3.3 --- MATERIALS AND METHODS --- p.66 / Chapter 3.3.1 --- Generation and characterization of TβRII conditional Knockout mice --- p.66 / Chapter 3.3.2 --- Generation and characterization of TβRII disrupted tubular epithelial cell line (NRK52E) and kidney interstitial fibroblasts --- p.67 / Chapter 3.3.3 --- Animal model of Unilateral Ureteral Obstruction --- p.67 / Chapter 3.3.4 --- Cell culture --- p.67 / Chapter 3.3.5 --- Real-time RT-PCR --- p.68 / Chapter 3.3.6 --- Masson Trichrome Staining --- p.68 / Chapter 3.3.7 --- Immunohistochemistry --- p.68 / Chapter 3.3.8 --- PAS staining --- p.69 / Chapter 3.3.9 --- Immunofluorescence --- p.69 / Chapter 3.3.10 --- Western blot analysis --- p.70 / Chapter 3.3.11 --- Promoter assay --- p.70 / Chapter 3.3.12 --- Statistical analysis --- p.70 / Chapter 3.4 --- RESULTS --- p.71 / Chapter 3.4.1 --- Characterization of TβRII conditional Knockout mice and TβRII disrupted cells --- p.71 / Chapter 3.4.2 --- Disruption of TβRII suppresses renal interstitial damage in the UUO kidney --- p.72 / Chapter 3.4.3 --- Disruption of TβRII suppresses renal fibrosis in UUO kidney and TGF-β1-induced fibrotic response in vitro --- p.76 / Chapter 3.4.3.1 --- Conditional knockout of TβRII from the kidney decreases the collagen I level in UUO kidney --- p.76 / Chapter 3.4.3.2 --- Disruption of TβRII inhibits TGF-β1 induced collagen I level in vitro --- p.79 / Chapter 3.4.3.3 --- Conditional knockout of TβRII from the kidney decreases the α-SMA positive cells infiltration in vivo --- p.81 / Chapter 3.4.3.4 --- Disruption of TβRII inhibits TGF-β1-induced α-SMA expression in vitro --- p.83 / Chapter 3.4.3.5 --- Conditional knockout of TβRII from the kidney decreases the FN level in UUO nephropathy --- p.85 / Chapter 3.4.3.6 --- Disruption of TβRII decreases TGF-β1-induced FN expression in vitro --- p.87 / Chapter 3.4.4 --- Disruption of TβRII impairs the TGF-β/Smad signaling in vivo in the UUO kidney and in vitro in TGF-β1 treated tubular epithelial cells and kidney fibroblasts --- p.89 / Chapter 3.4.4.1 --- Conditional knockout of TβRII decreases the UUO induced TGF-β1 expression in vivo and the TGF-β1 auto-induction in vitro --- p.89 / Chapter 3.4.4.2 --- Disrupted TβRII decreases CTGF level in the UUO nephropathy in vivo and the TGF-β1 induced CTGF mRNA level in vitro --- p.91 / Chapter 3.4.4.3 --- Conditional knockout of TβRII impairs the Smad3 signaling in the injured kidney --- p.93 / Chapter 3.4.4.4 --- Disrupted TβRII inhibits TGF-β1-induced Smad3 phosphorylation, P-Smad3 nuclear translocation and Smad3 responsive promoter activity in vitro --- p.95 / Chapter 3.4.4.5 --- Conditional knockout of TβRII doesn’t alter the activation of ERK and P38 signaling in the UUO kidney --- p.97 / Chapter 3.4.4.6 --- Disrupted TβRII inhibits TGF-β1-induced ERK and P38 phosphorylation in vitro --- p.99 / Chapter 3.4.5 --- Disruption of TβRII enhances inflammatory cytokines expression in the UUO kidney and impairs the anti-inflammatory effect of TGF-β1 in response to IL-1β triggered inflammatory response in the TEC cells --- p.101 / Chapter 3.4.5.1 --- Conditional knockout of TβRII increases the TNF-α expression in the UUO nephropathy --- p.101 / Chapter 3.4.5.2 --- Conditional knockout of TβRII increases the IL-1β expression in the UUO nephropathy --- p.103 / Chapter 3.4.5.3 --- Conditional knockout of TβRII doesn’t enhance the MCP-1 expression and macrophages infiltration in the UUO nephropathy --- p.104 / Chapter 3.4.5.4 --- Disruption of TβRII in TECs decreases the anti-inflammatory effect of TGF-β1 in response to IL-1β --- p.106 / Chapter 3.4.6 --- Disruption of TβRII enhances NFκB activation in vivo and in vitro --- p.108 / Chapter 3.5 --- DISCUSSION --- p.110 / Chapter 3.6 --- CONCLUSION --- p.114 / Chapter CHAPTER IV --- Smad2 protects against TGF-β/Smad3 mediated renal fibrosis --- p.115 / Chapter 4.1 --- INTRODUCTION --- p.116 / Chapter 4.2 --- AIMS --- p.117 / Chapter 4.3 --- MATERIALS AND METHODS --- p.117 / Chapter 4.3.1 --- Generation and characterization of Smad2 conditional Knockout mice --- p.117 / Chapter 4.3.2 --- Generation and characterization of Smad2 KO MEFs and Smad2 knockdown/overexpression tubular epithelial cell line (NRK52E) --- p.118 / Chapter 4.3.3 --- Animal model of Unilateral Ureteral Obstruction --- p.118 / Chapter 4.3.4 --- Cell culture --- p.118 / Chapter 4.3.5 --- Real-time RT-PCR --- p.119 / Chapter 4.3.6 --- Western blot analysis --- p.119 / Chapter 4.3.7 --- Immunohistochemistry --- p.119 / Chapter 4.3.8 --- Masson Trichrome Staining --- p.119 / Chapter 4.3.9 --- Immunofluorescence --- p.120 / Chapter 4.3.10 --- Promoter assay --- p.120 / Chapter 4.3.11 --- ChIP assay --- p.120 / Chapter 4.3.12 --- Statistical analysis --- p.120 / Chapter 4.4 --- RESULTS --- p.121 / Chapter 4.4.1 --- Characterization of Smad2 disrupted mice and cells --- p.121 / Chapter 4.4.1.1 --- Characterization of Smad2 conditional Knockout mice --- p.121 / Chapter 4.4.1.2 --- Characterization of Smad2 knockout MEFs, Smad2 knockdown/overexpression TECs --- p.123 / Chapter 4.4.2 --- Disruption of Smad2 further enhances renal fibrosis in vivo and in vitro --- p.124 / Chapter 4.4.2.1 --- Conditional knockout of Smad2 increases total collagen deposition and Col.I level in the UUO kidney --- p.124 / Chapter 4.4.2.2 --- Disruption of Smad2 in MEFs and TECs increases Col.I production in a time- and dosage-dependent manner in response to TGF-β1 --- p.126 / Chapter 4.4.2.3 --- Conditional knockout of Smad2 increases Col.III level in the UUO kidney --- p.128 / Chapter 4.4.2.4 --- Disruption of Smad2 in MEFs and TECs increases Col.III production in a time- and dosage-dependent manner in response to TGF-β1 --- p.130 / Chapter 4.4.3 --- Disruption of Smad2 further enhances renal fibrosis by suppressing the collagen degradation system in vivo and in vitro --- p.132 / Chapter 4.4.3.1 --- Conditional knockout of Smad2 inhibits the MMP2 mRNA while enhances TIMP-1 production in UUO kidney --- p.132 / Chapter 4.4.3.2 --- Disruption of Smad2 in MEFs and TECs decreases the MMP2 level while enhances TIMP-1 production in response to TGF-β1 --- p.133 / Chapter 4.4.4 --- Disruption of Smad2 further increases renal fibrosis by increasing TGF-β1 auto-induction and CTGF level in vivo and in vitro --- p.135 / Chapter 4.4.4.1 --- Disruption of Smad2 increases TGF-β1 auto-induction in vivo and in vitro --- p.135 / Chapter 4.4.4.2 --- Disruption of Smad2 increases CTGF synthesis in vivo and in vitro --- p.137 / Chapter 4.4.5 --- Disruption of Smad2 further increases renal fibrosis by enhancing Smad3 signaling in vivo and in vitro --- p.139 / Chapter 4.4.5.1 --- Conditional knockout of Smad2 further enhances Smad3 phosphorylation and nuclear translocation --- p.139 / Chapter 4.4.5.2 --- Disruption of Smad2 in MEFs and TECs further enhances Smad3 phosphorylation, nuclear translocation, Smad3 responsive promoter activity and the binding to the Col1A2 promoter --- p.141 / Chapter 4.4.6 --- Overexpression of Smad2 suppresses Smad3 signaling therefore ameliorates the TGF-β1-induced fibrotic response in TECs --- p.144 / Chapter 4.4.6.1 --- Overexpression of Smad2 ameliorates the TGF-β1- induced fibrotic response in TECs --- p.144 / Chapter 4.4.6.2 --- Overexpression of Smad2 suppresses Smad3 phosphorylation --- p.146 / Chapter 4.5 --- DISCUSSION --- p.147 / Chapter 4.6 --- CONCLUSION --- p.150 / Chapter CHAPTER V --- THE DISTINCT ROLE OF SMAD4 IN RENAL INFLAMMATION AND FIBROSIS --- p.151 / Chapter 5.1 --- INTRODUCTION --- p.152 / Chapter 5.2 --- AIMS --- p.152 / Chapter 5.3 --- MATERIALS AND METHODS --- p.153 / Chapter 5.3.1 --- Generation and characterization of Smad4 conditional Knockout mice --- p.153 / Chapter 5.3.2 --- Generation and characterization of Smad4 disrupted kidney interstitial fibroblasts and peritoneal macrophages --- p.153 / Chapter 5.3.3 --- Animal model of Unilateral Ureteral Obstruction (UUO) --- p.154 / Chapter 5.3.4 --- Cell culture --- p.154 / Chapter 5.3.5 --- Real-time RT-PCR --- p.155 / Chapter 5.3.6 --- Western blot analysis --- p.155 / Chapter 5.3.7 --- Immunohistochemistry --- p.155 / Chapter 5.3.8 --- Masson Trichrome Staining --- p.155 / Chapter 5.3.9 --- Promoter assay --- p.156 / Chapter 5.3.10 --- ChIP assay --- p.156 / Chapter 5.3.11 --- Statistical analysis --- p.156 / Chapter 5.4 --- RESULTS --- p.157 / Chapter 5.4.1 --- Characterization of Smad4 conditional Knockout mice and Smad4 disrupted cells --- p.157 / Chapter 5.4.2 --- Disruption of Smad4 suppresses renal fibrosis in the UUO nephropathy in vivo and TGF-β1-induced fibrotic response in vitro --- p.160 / Chapter 5.4.2.1 --- Conditional knockout of Smad4 from the kidney decreases the total collagen deposition in the UUO nephropathy --- p.160 / Chapter 5.4.2.2 --- Conditional knockout of Smad4 from the kidney decreases the Col.I production in the UUO nephropathy --- p.161 / Chapter 5.4.2.3 --- Disruption of Smad4 inhibits TGF-β1-induced Col.I production in vitro --- p.163 / Chapter 5.4.3 --- Disruption of Smad4 impairs the Smad3 function in vivo and in vitro --- p.164 / Chapter 5.4.3.1 --- Conditional knockout of Smad4 doesn’t decrease Smad3 phosphorylation and P-Smad3 nuclear translocation in vivo and in vitro --- p.164 / Chapter 5.4.3.2 --- Disruption of Smad4 inhibits TGF-β1 induced Smad3 promoter activity and the Smad3 binding to Col1A2 promoter --- p.166 / Chapter 5.4.3.3 --- Disruption of Smad4 has minimal effect on the activation of ERK signaling in vivo and in vitro --- p.167 / Chapter 5.4.4 --- Disruption of Smad4 enhances renal inflammation and impairs the anti-inflammatory effect of TGF-β1 in response to IL-1β triggered inflammatory response in vitro --- p.169 / Chapter 5.4.4.1 --- Conditional knockout of Smad4 increases the inflammatory cells infiltration --- p.169 / Chapter 5.4.4.2 --- Conditional knockout of Smad4 increases the TNFα expression in the UUO nephropathy --- p.171 / Chapter 5.4.4.3 --- Conditional knockout of Smad4 increases the IL-1β expression in the UUO nephropathy --- p.172 / Chapter 5.4.4.4 --- Conditional knockout of Smad4 increases the MCP-1 expression in the UUO nephropathy --- p.173 / Chapter 5.4.4.5 --- Conditional knockout of Smad4 increases the ICAM-1 level in the UUO nephropathy --- p.174 / Chapter 5.4.4.6 --- Time and dosage dependent experiments in response to IL-1β in macrophages --- p.175 / Chapter 5.4.4.7 --- Disruption of Smad4 in macrophages decreases the anti-inflammatory effect of TGF-β1 in response to IL-1β --- p.176 / Chapter 5.4.5 --- Disruption of Smad4 impairs the inhibitory effect of Smad7 on NFκB activation in vivo and in vitro --- p.178 / Chapter 5.4.5.1 --- Conditional knockout of Smad4 largely inhibits Smad7 level in UUO kidney --- p.178 / Chapter 5.4.5.2 --- Conditional knockout of Smad4 suppresses IκBα and further increases NF-κB p65 activation in UUO kidney --- p.180 / Chapter 5.4.5.3 --- Disruption of Smad4 inhibits Smad7 synthesis in macrophages --- p.182 / Chapter 5.4.5.4 --- Conditional knockout of Smad4 impair the inhibition effect of TGF-β1 on the activation of NFκB p65 in macrophages --- p.184 / Chapter 5.5 --- DISCUSSION --- p.186 / Chapter 5.6 --- CONCLUSION --- p.189 / Chapter CHAPTER VI --- SUMMARY AND DISCUSSION OF THE MAJOR FINDINGS --- p.190 / Chapter 6.1 --- SUMMARY AND DISCUSSION --- p.192 / Chapter 6.1.1 --- The diverse role of TβRII in renal inflammation and fibrosis both in vivo and in vitro --- p.192 / Chapter 6.1.2 --- Smad2 protects renal fibrosis by counter-regulating Smad3 signaling --- p.192 / Chapter 6.1.3 --- Disruption of Smad4 increased renal inflammation while suppressed the renal fibrosis in vivo and in vitro --- p.194 / Chapter 6.1.4 --- Comparative analysis of functions and related mechanisms between TβRII and Smad4 in renal disease --- p.195 / Chapter 6.1.5 --- Inadequacies of current work and future plan --- p.197 / Chapter 6.1.6 --- Perspectives (1) : The balance within the TGF-b/Smad signaling may determine the fate of renal diseases --- p.197 / Chapter 6.1.7 --- Perspectives(2):The balance within the TGF-β/Smad signaling may determine the fate of renal diseases --- p.198 / Chapter 6.2 --- CONCLUSION --- p.201 / REFERENCES --- p.202 / PUBLICATION LIST --- p.232 / HONORS AND AWARDS --- p.237
|
95 |
The role of Smad7 in regulating bone remodeling, osteoporosis and BM-MSCs differentiation.January 2014 (has links)
Smad7作為轉化生長因數-β信號通路中的負性調節因子為人所知,異常的Smad7表達通常會引發癌症及組織纖維化等疾病。而目前對於其在骨重建及其相關疾病中的作用尚未有研究。本研究利用Smad7部分敲除小鼠來探索Smad7在骨重建,骨質疏鬆以及間充質幹細胞分化等方面的作用。 / 本研究所用的Smad7部分敲除小鼠模型來源於已有報導過的Smad7ΔE1(KO)小鼠。該小鼠體內Smad7基因組外顯子I的翻譯區被替換,導致部分蛋白失及其功能破壞。研究結果表明,KO小鼠在6、12、24周齡時股骨遠端幹骺端均有不同程度下降的骨小梁數目、厚度,骨礦化率,骨密度,骨體積分數,及其上升的骨小梁間隙和破骨細胞表面。骨髓來源間充質幹細胞的多向分化實驗表明,KO組呈現出抑制性的成骨能力,表現為鈣結節形成減少,鹼性磷酸酶活性下降,早晚期成骨標記基因表達下降。該組亦表現出促進性的成脂能力,有較多及較早的脂滴形成,成脂標記基因表達上升。而對於骨髓來源巨噬細胞的體外破骨誘導實驗表明,KO組有更多且更大的破骨細胞形成,較大的骨吸收面積,以及上升的破骨標記基因表達。卵巢切除小鼠模型的研究表明,術後4、8、16周,KO组的股骨遠端幹骺端对比野生组有更大程度下降的骨形态学参数,以及明顯升高的破骨細胞融合標記蛋白的表達。體外實驗表明KO组有更多且更大的破骨細胞形成,以及更大面積的骨吸收。積雪草酸曾被證實在肝纖維化模型中誘導Smad7 基因的表達,也在本實驗中用以研究對骨質疏鬆疾病的作用。卵巢切除動物模型連續給藥8周後,骨質疏鬆的現象有明顯逆轉,表現為升高的骨形态学参数,及下降的股骨內破骨細胞融合標記蛋白的表達。 / 總結,本研究證實了Smad7在骨骼發育重建及骨疾病的病理機理等方面的研究提供了突破性的見解。部分敲除Smad7可以導致抑制性的成骨能力,促進性的破骨能力,以及損傷性的骨重建,亦會加速骨質疏鬆的進程,并可作為全新的藥物治療靶點,提示Smad7 本身對於骨重建及骨代謝的保護性作用,為代謝性骨疾病的研究及其臨床藥物開發提供了更廣泛的前景。 / Smad7 has been well documented as a negative regulator of TGF-β signaling, and its altered expression often leads to human diseases such as cancer and fibrosis. However, the role of Smad7 in regulating bone remodeling and related diseases remains unclear. We performed both in vivo and in vitro experiments as well as disease model and drug therapy studies using both wild-type (WT) and Smad7ΔE1 (KO) mice to investigate the functional role of Smad7 in bone remodeling, osteoporosis, and MSCs differentiation. / The Smad7ΔE1 mice were generated by replacing part of the exon1 of Smad7 gene as reported, which resulted in truncated protein and partial loss of Smad7 function. Mice were genotyped by PCR. The μ-CT, histological assays and bone histomorphometric assays in metaphysic region of the femurs showed lower trabecular number (TbN), trabecular thickness (TbTh), mineral apposition rate (MAR), higher trabecular separation (TbSp) and Osteoclast Surface (Oc.S/BS & Oc.N/BS) in the KO mice at 6, 12, to 24 weeks old; as well as lower bone mineral density (BMD) and bone volume fraction (BV/TV) at 24 weeks old in the KO mice. The in vitro BM-MSCs multi-lineage differentiation studies showed the suppressed osteogenic potential in the KO group with fewer mineralized nodules, lower ALP activity and expression of Col1A1, Runx2 and OCN; while the adipogenic potential was elevated with more lipid droplets formation and higher expression of Adipsin and C/EBPα. The osteoclastogenic potential of KO mice BMMs was also elevated, showing higher osteoclasts activity and larger resorptive areas, as well as elevated expression of TRAP and CTR. Both in vivo and in vitro studies of the osteoporotic models showed that the KO mice had lower BMD, TbTh, and higher TbSp compared to the WT mice at 4, 8, 16 weeks after OVX, similar results of lower BV/TV and TbN were observed at 4 weeks after OVX in the KO mice. The RANKL-induced osteoclastogenesis potential was elevated compared to WT mice, with more and bigger osteoclasts, larger resorptive areas, as well as elevated expression of TRAP and CTR. The osteoclastic cell fusion was also enhanced. Treatment of Asiatic acid (one traditional Chinese medicine that has been proved to induce the expression of Smad7 as reported) in the OVX mice reversed the osteoporotic process with increase BMD, BV/TV, TbN, TbTh, and decreased TbSp compared to the untreated group. The osteoclastic cell fusion was suppressed after AA treatment. / Partial loss of Smad7 function leads to impaired bone remodeling in vivo, reduced osteogenesis and enhanced osteoclastogenesis in vitro, and also accelerates the osteoporotic development and osteoclastic cell fusion. Asiatic acid may be a novel potential drug for prevention of osteoporosis. Our findings provide new evidences for a better understanding of the biological functions of Smad7 in bone remodeling and its therapeutic potential for metabolic bone diseases. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Nan. / Thesis (Ph.D.) Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 131-153). / Abstracts also in Chinese.
|
96 |
Daf-9, a cytochrome P450 regulating C. elegans larval development and adult longevity /Jia, Kailiang, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 134-144). Also available on the Internet.
|
97 |
Daf-9, a cytochrome P450 regulating C. elegans larval development and adult longevityJia, Kailiang, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 134-144). Also available on the Internet.
|
98 |
Analysis of the Role of Autophagy in Dauer Formation and Dauer Recovery Regulated by TGF-β Signaling Pathway in Caenorhabditis elegansUnknown Date (has links)
Caenorhabditis elegans optionally enter into a dauer diapause phase that results
in a prolonged life in a semi-dormant state. Entry into and recovery from dauer diapause
includes many physical changes in body structure, physiology, and gene expression.
Entry into dauer diapause is regulated by several signaling pathways including
transforming growth factor (TGF-β). Autophagy plays an important role in dauer
formation and recover. During dauer transformation autophagy is up-regulated and may
play a role in remodeling the molecular structure for long term survival during dauer
diapause. This research helps determine the role of autophagy in dauer development and
recovery mediated through the TGF-β signaling pathway. This research also determines
in which tissue autophagy is necessary for dauer formation and recovery through TGF-β signaling. This research is shedding light on the function of autophagy in the TGF-β
signaling pathway, both processes of which have been linked to tumorigenesis, heart
disease and cancer. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
99 |
Role of TGF-β/Smad signaling in pulmonary inflammation and fibrosis. / 轉化生長因子TGF-β/Smad信號通路在肺臟炎症及纖維化中的作用 / Role of TGF-beta/Smad signaling in pulmonary inflammation and fibrosis / CUHK electronic theses & dissertations collection / Zhuan hua sheng zhang yin zi TGF-β/Smad xin hao tong lu zai fei zang yan zheng ji xian wei hua zhong de zuo yongJanuary 2013 (has links)
Tang, Yongjiang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 159-202). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
100 |
Express?o imuno-histoqu?mica das prote?nas IFN-? e TGF-?1 em cistos radiculares e cistos dent?gerosRocha Neto, Pedro Carlos da 29 February 2012 (has links)
Made available in DSpace on 2014-12-17T15:32:21Z (GMT). No. of bitstreams: 1
PedroCRN_DISSERT.pdf: 3117630 bytes, checksum: 2544a3022fe67731388c2238d7dc5289 (MD5)
Previous issue date: 2012-02-29 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Odontogenic cysts are pathologic cavities covered by odontogenic epithelium and filled by liquid, desquamated cells or other materials. The intraosseous lesions, such as radicular cyst and dentigerous cyst, present a potential of expansion capable of promoting the destruction of the surrounding osseous tissue. The mechanisms related to this process of expansion are the proliferation of cystic epithelium, the increase of the osmolarity of the cystic fluid and the synthesis of reabsorption factors such as IFN-? and TGF-?1. The aim of this study was to evaluate and compare the immunohistochemical expression of IFN-? and TGF-?1 between radicular cysts and dentigerous cysts in order to understand the role and behavior of these proteins in the expansion of these cysts. We selected 20 cases of radicular cyst and 20 cases of dentigerous cyst chosen from the files of UFRN s Laboratory of Oral Pathology. After analyzing the clinical data, the cases underwent the routine staining technique (HE) and immunohistochemistry for the appearance of IFN-? and TGF-?1 in the epithelium and capsule of these cysts. The statistical analysis using the Mann-Whitney test revealed no statistically significant difference in immunoexpression of IFN-? between the epithelium (p = 0.565) and capsules (p = 0.414) of radicular cysts and dentigerous cysts. Moreover, there was no statistically significant difference of immunoexpression of TGF-?1 between the epithelium (p = 0.620) and capsules (p = 0.056) of radicular cysts and dentigerous cysts. The Wilcoxon test revealed no statistically significant difference between IFN-? and TGF-?1 imunoexpressions in the epithelium (p = 0.225) and capsules (p = 0.370) of radicular cysts. There was no statistically significant difference between IFN-? and TGF-?1 imunoexpressions in the epithelium (p = 0.361) of dentigerous cysts. However, there was a statistically significant difference between IFN-? and TGF-?1 immunoexpressions in the capsule (p = 0.001) of dentigerous cysts, being TGF-?1 the factor which presented the most significant immunoexpression. Given these results, we conclude that there was no difference in immunohistochemical expression of IFN-? and TGF-?1 between radicular and dentigerous cysts and that TGF-?1 was more significant than the IFN-? in the capsule of dentigerous cysts / Os cistos odontog?nicos s?o cavidades patol?gicas revestidas por epit?lio odontog?nico e preenchidas por l?quido, c?lulas descamadas, ou outros materiais. As les?es intra-?sseas, como o cisto radicular e o cisto dent?gero, apresentam um potencial de expans?o capaz de promover a destrui??o do tecido ?sseo circunjacente. Os mecanismos relacionados a esse processo de expans?o s?o a prolifera??o do epit?lio c?stico, o aumento da osmolaridade do fluido c?stico e a s?ntese de fatores de reabsor??o ?ssea como IFN-? e TGF-?1. O objetivo deste estudo foi avaliar e comparar a express?o imuno-histoqu?mica do IFN-? e do TGF-?1 entre cistos radiculares e cistos dent?geros com a finalidade de compreender o papel e o comportamento dessas prote?nas no processo de expans?o destes cistos. Selecionamos 20 casos de cisto radicular e 20 casos de cisto dent?gero retirados dos arquivos do Laborat?rio de Patologia Oral da UFRN. Ap?s an?lise dos dados cl?nicos, os casos foram submetidos a t?cnica de colora??o de rotina (HE) e ao m?todo imuno-histoqu?mico para evidencia??o da express?o do IFN-? e do TGF-?1 no epit?lio e na c?psula dos referidos cistos. A an?lise estat?stica dos dados utilizando o teste de Mann-Whitney revelou que n?o houve diferen?a estatisticamente significativa da imunoexpress?o do IFN- entre os epit?lios (p=0,565) e c?psulas (p=0,414) dos cistos radiculares e cistos dent?geros. Al?m disso, n?o houve diferen?a estatisticamente significativa da imunoexpress?o do TGF-?1 entre os epit?lios (p=0,620) e c?psulas (p=0,056) dos cistos radiculares e cistos dent?geros. O teste de Wilcoxon revelou que n?o houve diferen?a estatisticamente significativa entre as imunoexpress?es do IFN- e do TGF-?1 no epit?lio (p=0,225) e na c?psula (p=0,370) dos cistos radiculares. N?o houve diferen?a estatisticamente significativa entre as imunoexpress?es do IFN- e do TGF-?1 no epit?lio (p=0,361) dos cistos dent?geros. No entanto, houve diferen?a estatisticamente significativa entre as imunoexpress?es do IFN- e do TGF-?1 na c?psula (p=0,001) dos cistos dent?geros, sendo o TGF-?1 o que apresentou a imunoexpress?o mais significativa. Diante destes resultados, conclu?mos que n?o houve diferen?a de express?o imuno-histoqu?mica do IFN-? e do TGF-?1 entre os cistos radiculares e dent?geros e que o TGF-?1 foi mais expressivo do que o IFN-? na c?psula dos cistos dent?geros
|
Page generated in 0.3664 seconds