Spelling suggestions: "subject:"transforms"" "subject:"ztransforms""
151 |
Compressão de dados sísmicos com perda controlada / Seismic data compression with loss controlPedro Henrique Ribeiro da Silva 14 February 2014 (has links)
Neste trabalho apresentamos um novo método de compressão, com perda controlada de dados, que tem a vantagem de ter uma taxa significativa de compressão sem introduzir nenhuma perda superior a um parâmetro escolhido pelo usuário. Esta abordagem é uma abordagem mista, pois usa técnicas de compactação de dados tanto com perda quanto sem perda. Isto quer dizer que conseguimos um método que alia as vantagens da alta compressão, sem introduzir distorções indesejáveis nos dados. Mostramos como a massa de dados utilizada nos nossos estudos é obtida e a sua importância na prospecção de depósitos de hidrocarbonetos. É apresentado um levantamento bibliográfico com técnicas de compressão aplicadas a dados sísmicos tipicamente utilizadas em aplicações comerciais. Por fim, apresentamos os resultados da compressão utilizando o método em conjuntos de dados sísmicos reais. Para 1% de erro, os arquivos de dados sísmicos compactados passaram a ter algo próximo a 25% de seus tamanhos originais, o que representa um fator de compressão de aproximadamente 4 / This work presents a new compression method with controlled loss of data, which has the advantage of having a significant compression ratio without introducing to the data a loss higher than a parameter chosen by the user. This approach is a mixed approach, as it uses lossy and lossless data compression techniques. This means that we have achieved a method that combines the advantages of high compression without introducing undesirable distortions in the data. We show how the mass of data used in our studies is obtained and its importance in the exploration of hydrocarbon deposits. A literature review is presented with compression techniques applied to seismic data typically used in commercial applications. Finally, we present the results of compression using the method on real seismic data sets. For 1% error, the archives of seismic data now have close to 25% of their original size, which represents a compression factor of about 4
|
152 |
CLASSIFICATION OF HIGH IMPEDANCE FAULTS, INCIPIENT FAULTS AND CIRCUIT BREAKER RESTRIKES DURING CAPACITOR BANK DE-ENERGIZATION IN RADIAL DISTRIBUTION FEEDERSAlmalki, Mishrari Metab 01 May 2018 (has links)
Monitoring of abnormal events in a distribution feeder by using a single technique is a challenging task. Many abnormal events can cause unsafe operation, including a high impedance fault (HIF) caused by a downed conductor touch ground surface, an incipient fault (IF) caused by partial breakdown to a cable insulation, and a circuit breaker (CB) malfunction due to capacitor bank de-energization to cause current restrikes. These abnormal events are not detectable by conventional protection schemes. In this dissertation, a new technique to identify distribution feeder events is proposed based on the complex Morlet wavelet (CMW) and on a decision tree (DT) classifier. First, the event is detected using CMW. Subsequently, a DT using event signatures classifies the event as normal operation, continuous and non-continuous arcing events (C.A.E. and N.C.A.E.). Additional information from the supervisory control and data acquisition (SCADA) can be used to precisely identify the event. The proposed method is meticulously tested on the IEEE 13- and IEEE 34-bus systems and has shown to correctly classify those events. Furthermore, the proposed method is capable of detecting very high impedance incipient faults (IFs) and CB restrikes at the substation level with relatively short detection time. The proposed method uses only current measurements at a low sampling rate of 1440 Hz yielding an improvement of existing methods that require much higher sampling rates.
|
153 |
Compressão de dados sísmicos com perda controlada / Seismic data compression with loss controlPedro Henrique Ribeiro da Silva 14 February 2014 (has links)
Neste trabalho apresentamos um novo método de compressão, com perda controlada de dados, que tem a vantagem de ter uma taxa significativa de compressão sem introduzir nenhuma perda superior a um parâmetro escolhido pelo usuário. Esta abordagem é uma abordagem mista, pois usa técnicas de compactação de dados tanto com perda quanto sem perda. Isto quer dizer que conseguimos um método que alia as vantagens da alta compressão, sem introduzir distorções indesejáveis nos dados. Mostramos como a massa de dados utilizada nos nossos estudos é obtida e a sua importância na prospecção de depósitos de hidrocarbonetos. É apresentado um levantamento bibliográfico com técnicas de compressão aplicadas a dados sísmicos tipicamente utilizadas em aplicações comerciais. Por fim, apresentamos os resultados da compressão utilizando o método em conjuntos de dados sísmicos reais. Para 1% de erro, os arquivos de dados sísmicos compactados passaram a ter algo próximo a 25% de seus tamanhos originais, o que representa um fator de compressão de aproximadamente 4 / This work presents a new compression method with controlled loss of data, which has the advantage of having a significant compression ratio without introducing to the data a loss higher than a parameter chosen by the user. This approach is a mixed approach, as it uses lossy and lossless data compression techniques. This means that we have achieved a method that combines the advantages of high compression without introducing undesirable distortions in the data. We show how the mass of data used in our studies is obtained and its importance in the exploration of hydrocarbon deposits. A literature review is presented with compression techniques applied to seismic data typically used in commercial applications. Finally, we present the results of compression using the method on real seismic data sets. For 1% error, the archives of seismic data now have close to 25% of their original size, which represents a compression factor of about 4
|
154 |
Characterization and application of analysis methods for ECG and time interval variability dataTikkanen, P. (Pauli) 09 April 1999 (has links)
Abstract
The quantitation of the variability in cardiovascular signals provides information about
the autonomic neural regulation of the heart and the circulatory system. Several factors
have an indirect effect on these signals as well as artifacts and several types of noise are
contained in the recorded signal. The dynamics of RR and QT interval time series have
also been analyzed in order to predict a risk of adverse cardiac events and to diagnose
them.
An ambulatory measurement setting is an important and demanding condition for the
recording and analysis of these signals. Sophisticated and robust signal analysis schemes
are thus increasingly needed. In this thesis, essential points related to ambulatory data
acquisition and analysis of cardiovascular signals are discussed including the accuracy
and reproducibility of the variability measurement. The origin of artifacts in RR interval
time series is discussed, and consequently their effects and possible correction procedures
are concidered. The time series including intervals differing from a normal sinus rhythm
which sometimes carry important information, but may not be as such suitable for an
analysis performed by all approaches. A significant variation in the results in either intra-
or intersubject analysis is unavoidable and should be kept in mind when interpreting the
results.
In addition to heart rate variability (HRV) measurement using RR intervals, the dy-
namics of ventricular repolarization duration (VRD) is considered using the invasively
obtained action potential duration (APD) and different estimates for a QT interval taken
from a surface electrocardiogram (ECG). Estimating the low quantity of the VRD vari-
ability involves obviously potential errors and more strict requirements. In this study,
the accuracy of VRD measurement was improved by a better time resolution obtained
through interpolating the ECG. Furthermore, RTmax interval was chosen as the best QT
interval estimate using simulated noise tests. A computer program was developed for the
time interval measurement from ambulatory ECGs.
This thesis reviews the most commonly used analysis methods for cardiovascular vari-
ability signals including time and frequency domain approaches. The estimation of the
power spectrum is presented on the approach using an autoregressive model (AR) of
time series, and a method for estimating the powers and the spectra of components is
also presented. Time-frequency and time-variant spectral analysis schemes with applica-
tions to HRV analysis are presented. As a novel approach, wavelet and wavelet packet
transforms and the theory of signal denoising with several principles for the threshold
selection is examined. The wavelet packet based noise removal approach made use of an
optimized signal decomposition scheme called best tree structure. Wavelet and wavelet
packet transforms are further used to test their effciency in removing simulated noise
from the ECG. The power spectrum analysis is examined by means of wavelet transforms,
which are then applied to estimate the nonstationary RR interval variability. Chaotic
modelling is discussed with important questions related to HRV analysis.ciency in removing simulated noise
from the ECG. The power spectrum analysis is examined by means of wavelet transforms,
which are then applied to estimate the nonstationary RR interval variability. Chaotic
modelling is discussed with important questions related to HRV analysis.
|
155 |
A Radon Space Approach To Multiresolution Tomographic Reconstruction And Multiscale Edge Detection Using WaveletsGoel, Anurag 11 1900 (has links) (PDF)
No description available.
|
156 |
Approche de reconstruction d’images fondée sur l’inversion de certaines transformations de Radon généralisées / Image reconstruction based on the inversion of some generalized Radon transformsRegnier, Rémi 18 June 2014 (has links)
Depuis l'invention de la radiographie au début du vingtième siècle et des premiers radars lors la seconde guerre mondiale, le besoin de connaître notre environnement par différentes techniques d'imagerie n'a cessé de croître. Ce besoin a pris de multiples formes, allant de l'exploration d'une structure interne avec la prolifération des techniques d'imagerie non invasives à l'imagerie par satellite qui accompagna la conquête de l'espace. Nombre de systèmes d'imagerie ont donc été proposés pour arriver à créer les images les plus représentatives des milieux étudiés. Parmi eux la tomodensitométrie, ou scanner médical, a connu un succès remarquable depuis son invention. La raison de ce succès vient du fait que son principe de fonctionnement est fondé sur la transformée de Radon dont l'inversion permet de restituer une image fidèle de l'intérieur du milieu étudié.La transformée de Radon (TR) est une transformée géométrique intégrale, qui intègre une densité physique d'intérêt, le long d'une droite du plan. Il est donc naturel de penser qu'une généralisation de la TR, qui consiste à remplacer la droite, support d'intégration, par une courbe ou par une surface, peut amener à une nouvelle imagerie. Dans cette thèse, nous étudions deux types de transformées de Radon généralisées qui sont définies sur des lignes brisées en V du plan (appelées TRV) et des sphères centrées sur un plan fixe (appelées TRS) ainsi que leurs imageries correspondantes.Les transformées de Radon généralisées sur des lignes brisées (TRV) nous permettent de proposer trois nouvelles modalités tomographiques. La première, comme la tomodensitométrie, exploite le phénomène d'atténuation du rayonnement X lors de sa propagation dans un milieu mais utilise aussi le phénomène de réflexion du rayonnement sur une surface impénétrable. La deuxième exploite le phénomène de diffusion Compton du rayonnement émis par un objet. La troisième combine deux modalités d'imageries par transmission et par émission sous la forme d'une imagerie bimodale à partir du rayonnement ionisant diffusé. Cette étude permet non seulement de faire émerger de nouvelles imageries pouvant concurrencer celles existantes mais aussi d'établir de nouveaux algorithmes pour la correction de l'atténuation (un des facteurs physiques dégradant sérieusement la qualité d'image tomographique actuellement).La transformée de Radon sur des sphères centrées sur un plan fixe (TRS) est une généralisation connue de la transformée de Radon en trois dimensions. Elle a été proposée comme modèle mathématique de l'imagerie radar à synthèse d'ouverture (RSO). On montre par la construction d'algorithmes appropriés que l'inversion de cette TRS donne une solution efficace à la reconstruction d'images de l'environnement directement en 3D.La faisabilité théorique de ces nouvelles imageries modélisées par ces deux classes de transformées de Radon généralisées et la performance des algorithmes de reconstruction d'images basés sur les formules d'inversion de ces transformées ouvrent plusieurs perspectives : extension en 3D de l'imagerie bimodale par rayonnement ionisant diffusé, ou possibilité de détection de cibles mobiles en imagerie RSO par introduction d'autres généralisations de la TR. De plus, les méthodes développés dans cette thèse sont susceptibles d'application dans d'autres imageries : imagerie sismique modélisée par la transformée de Radon définie sur des paraboles, imagerie radar Doppler par la TR sur des hyperboles ou encore imagerie thermo-opto-acoustique modélisée par la TR sur des cercles centrés sur un cercle fixe. / Since the invention of radiography at the beginning of the 20th century and of the radar during the 2nd world war, the need of information on our environment is ever increasing. This goes from the exploration of internal structures using non-invasive numerous imaging techniques to satellite imaging which rapidly expands with space exploration. A huge number of imaging systems have been conceived to provide faithful images of the objects of interest. Computed Tomography (or the medical scanner) has experienced a tremendous success since it was invented. The reason for this success lies in the fact that its mathematical foundation is the Radon transform (RT), which has an inverse formula allowing the faithful reconstruction of the interior of an object.The Radon transform is a geometric integral transform which integrates a physical density of interest along a straight line in the plane. It is natural to expect that, when the line is replaced by a curve or a surface as an integration support, new imaging processes may emerge. In this thesis, we study two generalized Radon transforms which are defined on broken lines in the form of a letter V (called V-line RT or VRT) and on spheres centered on a fixed plane (called spherical RT or SRT), as well as their resulting imaging processes.The Radon transforms on V-lines (VRT) form the mathematical foundation of three tomographic modalities. The first modality exploits not only the attenuation of X-rays in traversed matter (as in Computed Tomography) but also the phenomenon of reflection on an impenetrable surface. The second modality makes use of Compton scattering for emission imaging. The third modality combines transmission and emission imaging modalities into a bimodal imaging system from scattered ionizing radiation. This study puts forward new imaging systems which compete with the existing ones and develops new algorithms for attenuation corrections (in emission imaging the attenuation is one of factors degrading seriously tomographic image quality up to now).The Radon transform on spheres centered on a fixed plane (SRT) is a generalization of the classical Radon transform in three dimensions. It has been proposed as a mathematical model for Synthetic Aperture Radar (SAR) imaging. We show through the setting up of appropriate algorithms that the inversion of the SRT yields an efficient solution to the landscape reconstruction problem, directly in three dimensions.The theoretical feasibility of these new imaging systems based on generalized Radon transforms and the good performance of inversion algorithms based on inversion formulas open the way to several perspectives: 3D extension of bimodal imaging by scattered radiation or SAR target motion detection through the introduction of other generalized Radon transforms. Moreover the algorithmic methods developed here may serve in other imaging activities such as: seismics with the parabolic Radon transform, Doppler radar with the hyperbolic Radon transform, thermo-opto-acoustic imaging with the Radon transform on circles centered on a fixed circle.
|
157 |
Toward Using Empirical Mode Decomposition to Identify Anomalies in Stream FlowData and Correlations with other Environmental DataRamirez, Saul Gallegos 01 June 2019 (has links)
I applied empirical mode decomposition (EMD) and the Hilbert-Herbert transforms, as tools to analyze streamflow data. I used the EMD method to extract and analyze periodic processes and trends in several environmental datasets including daily stream flow, daily precipitation, and daily temperature on data from the watersheds of two rivers in the Upper Colorado River Basin, the Yampa and the Upper-Green rivers. I used these data to identify forcing functions governing streamflow. Forcing functions include environmental factors such as temperature and precipitation and anthropogenic factors such as dams or diversions. The Green and Yampa Rivers have similar headwaters, but the Yampa has minimal diversions or controls while Flaming George Dam on the Green river significantly affects flow. This provides two different flow regimes with similar large watersheds. In addition to flow data, I analyzed several time series data sets, including temperature and precipitation from Northeast Utah, North Western Colorado, and Southern Wyoming. These data are from the area that defines the Yampa River and Green River watersheds, which stretch from Flaming Gorge Dam to Ouray Colorado. The EMD method is a relatively new technique that allows any time series data set, including non-linear and non-stationary datasets that are common in earth observation data, to be decomposed into a small quantity of composite finite data series, called intrinsic mode functions (IMFs). The EMD method can decompose any complicated data into several IMFs that represent independent signals in the original data. These IMFs may represent periodic forcing functions, such as environmental conditions or dam operations, or they may be artifacts of the decomposition method and not have an associated physical meaning. This study attempts to assign physical meaning to some IMFs resulting from the decomposition of the Green and Yampa flows where possible. To assign physical meaning to the IMFs, I analyzed frequencies of each IMF using the Hilbert-Hung transform, part of the Empirical Mode Decomposition method, and then compared frequencies of the IMFs with the known frequencies of physical processes. I performed these calculations on both flow, temperature, and precipitation. I found significant correlation between IMF components of flow, precipitation, and temperature data with El Niño Southern Oscillation (ENSO) events. The EMD process also extracts the long-term trend in non-linear data sets that can provide insights into the effects of climate change on the flow system. Though in preliminary stages of research, these analysis methods may lead to further understanding the availability of water within the upper Yampa and Green River Watersheds.
|
158 |
Geometrické transformace obrazu / Geometrical Image TransformsNěmeček, Petr Unknown Date (has links)
This master's thesis deals with acceleration of geometrical image transforms using the GPU and NVIDIA (R) CUDA TM architecture. Time critical parts of the code are moved on the GPU and executed in parallel. One of the results is a demonstrational application for performance comparison of both architectures: the CPU, and GPU in combination with the CPU. As a reference implementation, there are used highly optimized routines from the OpenCV library, made by the Intel company.
|
159 |
Transformations de Radon pondérées et leurs applications / Weighted Radon transforms and their applicationsGoncharov, Fedor 15 July 2019 (has links)
Cette thèse est consacrée à l'étude des problèmes inverses des transformations de Radon pondérées dans les espaces euclidiens. D'une part, nos études sont motivées par l'application des transformations de Radon pondérées pour différentes tomographies, par exemple en tomographie d'émission (PET, SPECT), en tomographie de fluorescence et en tomographie optique. En particulier, nous développons une nouvelle approche de reconstruction pour les tomographies en 3D, où les données sont modélisées par des transformations des rayons pondérées le long des rayons parallèles à un plan fixe. À cet égard, nos résultats contiennent : des formules pour la réduction des transformées des rayons pondérés en transformées de Radon le long de plans en 3D ; un analogue de la formule d'inversion approximative de Chang et un analogue de l'algorithme d'inversion itératif de type Kunyansky pour les transformations de Radon pondérées en multidimension ; des reconstructions numériques à partir de données simulées et réelles. D'autre part, nos études sont motivées par des problèmes mathématiques liés aux transformations susmentionnées. Plus précisément, nous poursuivons l'étude de l'injectivité et de la non-injectivité des transformations de Radon et des transformations des rayons pondérées en multidimension et construisons une série de contre-exemples à l'injectivité de ces dernières. Ces contre exemples sont intéressants et, dans un certain sens, inattendus parce qu'ils sont proches des cas où ces transformations deviennent injectives. En particulier, par l'une de nos constructions, nous donnons des contre-exemples à des théorèmes d'injectivité bien connus pour les transformations des rayons pondérées (Quinto (1983), Markoe, Quinto (1985), Finch (1986), Ilmavirta (2016)) lorsque les hypothèses de régularité des poids sont légèrement relaxées. Par ce résultat, nous montrons en particulier que les hypothèses de régularité sur les poids sont cruciales pour l'injectivité et qu'il y a une "brisure" de cette dernière si les hypothèses sont légèrement affaiblies. / This thesis is devoted to studies of inverse problems for weighted Radon tranforms in euclidean spaces. On one hand, our studies are motivated by applications of weighted Radon transforms in different tomographies, for example, in emission tomographies (PET, SPECT), flourescence tomography and optical tomography. In particular, we develop a new reconstruction approach for tomographies in 3D, where data are modelized by weighted ray transforms along rays parallel to some fixed plane. In this connection our results include: formulas for reduction of the aforementioned weighted ray transforms to weghted Radon transforms along planes in 3D; an analog of Chang approximate inversion formula and an analog of Kunyansky-type iterative inversion algorithm for weighted Radon transforms in multidimensions; numercal reconstructions from simulated and real data. On the other hand, our studies are motivated by mathematical problems related to the aforementioned transforms. More precisely, we continue studies of injectivity and non-injectivity of weighted ray and Radon transforms in multidimensions and we construct a series of counterexamples to injectivity for the latter. These counterexamples are interesting and in some sense unexpected because they are close to the setting when the corresponding weighted ray and Radon transforms become injective. In particular, by one ofour constructions we give counterexamples to well-known injectivity theorems for weighted ray transforms (Quinto (1983), Markoe, Quinto (1985), Finch (1986), Ilmavirta (2016)) when the regularity assumptions on weights are slightly relaxed. By this result we show that, in particular, the regularity assumptions on weights are crucial for the injectivity and there is a breakdown of the latter if the assumptions are slightly relaxed.
|
160 |
[pt] ANÁLISE DE PROBLEMAS TRIDIMENSIONAIS SOLO-ESTRUTURA PELO MÉTODO DOS ELEMENTOS FINITOS NO DOMÍNIO DE FOURIER / [es] ANÁLISIS DE PROBLEMAS TRIDIMENSIONALES SUELO-EXTRUCTURA POR EL MÉTODO DE LOS ELEMENTOS FINITOS EN EL DOMINIO DE FOURIER / [en] THREE-DIMENSIONAL ANALYSIS OF SOIL-STRUCTURE PROBLEMS USING THE FINITE ELEMENT METHOD IN THE FOURIER DOMAINJANAINA VEIGA CARVALHO 03 August 2001 (has links)
[pt] Este trabalho estuda problemas geotécnicos e de interação
solo-estrutura utilizando o método dos elementos finitos
acoplado com a transformada de Fourier. Pela aplicação da
transformada de Fourier, as equações diferenciais que
governam o problema elástico linear, com as correspondentes
condições de contorno, são reescritas no plano de Fourier,
permitindo que um problema de natureza tridimensional possa
ser numericamente analisado por uma discretização
bidimensional. Esta técnica foi empregada neste trabalho
para certos problemas de engenharia, como dutovias, túneis
e fundações tipo radier, onde a geometria e os parâmetros
dos materiais mantêm-se constantes ao longo do eixo
longitudinal do corpo, porém admitindo-se variações
espaciais no carregamento imposto ao sistema, gerando ,
assim, um estado tridimensional de tensões. Alguns
elementos de interface, com formulação publicada na
literatura, foram também considerados na implementação
computacional, visto que em problemas de interação solo-
estrutura o comportamento do sistema é bastante
influenciado pelas propriedades e características mecânicas
do solo imediatamente vizinho à estrutura. Os exemplos
numéricos apresentados são comparados, sempre que possível,
com os resultados obtidos por outra solução analítica ou
numérica, procurando discutir as vantagens e limitações do
acoplamento da transformada de Fourier com o método dos
elementos finitos para a análise de determinada classe de
problemas geotécnicos tridimensionais. / [en] In this work some geotechnical and soil-structure
interaction problems are studied using the finite element
method coupled with a Fourier transform technique. For
linear elastic problems, Fourier transforms are applied to
the governing field equations, thus enabling that some
specific tridimensional problems can be analyzed using a 2D
finite element mesh. In conventional finite element
applications, a 3D discretization is usually required, but
difficulties associated with the preparation of the finite
element mesh and the involved computational efforts
prevent, in general, the use of a true 3D model. The
integral transform method is used in this research for the
analysis of some very common problems in geotechnical
engineering, such as piping systems, raft foundations and
tunnels, where the geometry and the soil profile may be
considered constant along a coordinate direction. The
applied loading, however, can assume any possible surface
distribution, which does not allow to treat the problem
under the plane strain assumptions. Some special finite
elements presented in the literature, called joint or
interface elements, are also incorporated into the finite
element computational program written in this research,
given that for soil-structure interaction problems the
material behavior at the common interface may greatly affect
the entire system results. Some numerical examples are
presented, and their numerical results are compared,
whenever possible, with other solutions obtained using
analytical or other numerical technique. Advantages and
limitations of the integral transform method to solve
tridimensional geomechanics problems are also discussed in
this work. / [es] Este trabajo estudia problemas geotécnicos y de interacción suelo-extructura utilizando el método de
los elementos finitos acoplado con la transformada de Fourier. Por la aplicación de la transformada
de Fourier, las ecuaciones diferenciales que goviernan el problema elástico lineal, con las
correspondentes condiciones de contorno, son reescritas en el plano de Fourier, permitiendo que un
problema de naturaleza tridimensional pueda ser numericamente analizado por una discretización
bidimensional. Esta técnica fue utilizada en este trabajo para ciertos problemas de Ingeniería, como
canales, túneles y fundaciones tipo radier, donde la geometría y los parámetros de los materiales se
mantienen constantes a lo largo del eje longitudinal del cuerpo, aunque se admiten variaciones
espaciales en la carga impuesta al sistema, generando , así, un estado tridimensional de tensiones.
En la implementación computacional fueron considerados algunos elementos de la interfaz, con
formulación publicada en la literatura, ya que en problemas de interacción suelo-extructura, el
comportamiento del sistema está bastante influenciado por las propiedades y características
mecánicas del suelo imediatamente vecino a la extructura. Los ejemplos numéricos presentados se
compararon, siempre que fue posible, con los resultados obtenidos por otra solución analítica o
numérica, discutiendo las ventajas y limitaciones del acoplamiento de la transformada de Fourier
con el método de los elementos finitos para el análisis de determinada clase de problemas
geotécnicos tridimensionales.
|
Page generated in 0.0506 seconds