Spelling suggestions: "subject:"transistor vertical"" "subject:"ransistor vertical""
1 |
Preparação e caracterização de um transistor orgânico de efeito de campo com arquitetura vertical / Preparation and characterization of an vertical organic field-effect transistorNogueira, Gabriel Leonardo [UNESP] 26 August 2016 (has links)
Submitted by Gabriel Leonardo Nogueira (gabrielnogueira5@hotmail.com) on 2016-11-02T14:46:19Z
No. of bitstreams: 1
Dissertação Gabriel FINAL corrigida.pdf: 3857264 bytes, checksum: 37885bf252f0c527d86237d787b4fe47 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-11-10T12:25:58Z (GMT) No. of bitstreams: 1
nogueira_gl_me_prud.pdf: 3857264 bytes, checksum: 37885bf252f0c527d86237d787b4fe47 (MD5) / Made available in DSpace on 2016-11-10T12:25:58Z (GMT). No. of bitstreams: 1
nogueira_gl_me_prud.pdf: 3857264 bytes, checksum: 37885bf252f0c527d86237d787b4fe47 (MD5)
Previous issue date: 2016-08-26 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O transistor orgânico de efeito de campo com arquitetura vertical (VOFET) possibilita contornar as principais limitações de um transistor orgânico de efeito de campo (OFET) convencional. Nesta estrutura, as camadas são empilhadas verticalmente, de modo que os eletrodos de fonte e dreno são separados pela camada semicondutora e o comprimento do canal definido pela espessura do filme semicondutor. Para o VOFET proposto, utilizou-se Al e Al2O3 (obtido por anodização) como eletrodo e dielétrico de gate, respectivamente. O filme semicondutor foi obtido pela deposição por spincoating de P3HT dissolvido em clorofórmio. Os eletrodos de fonte e dreno foram obtidos por evaporação térmica a vácuo. Ao utilizar Al e Au como fonte e dreno, respectivamente, foi possível estudar os dispositivos de dois terminais que compõe o VOFET. Com base nesses dispositivos, importantes parâmetros da estrutura vertical foram determinados, como capacitância do dielétrico (~265 nF/cm2), densidade de portadores e mobilidade do P3HT (NA = 9,2 x 1016 cm-3 e μ = 1,5x10-4 cm2V-1s-1). Para utilizar Sn como eletrodo de fonte, o filme foi avaliado por meio de medidas de resistência e capacitância, aliadas à analise morfológica por AFM. Observa-se que a adição de uma camada de PMMA sobre o Al2O3 melhora o desempenho do VOFET. Para o VOFET formado por Al2O3/PMMA (20 nm/14 nm), com Sn e Al como fonte e dreno, foram calculados os valores de densidade de corrente (Jeff = 7x10-3 mA/cm2), voltagem e campo limiar (VTH = -8V e ELIMIAR = 330 MV/m). Com isso, foi obtido um VOFET utilizando filme de Sn evaporado como eletrodo de fonte perfurado. / A way of circumvent the limitations of conventional organic field-effect transistor (OFET), is by using the vertical organic field-effect transistor (VOFET). In this structure, with layers stacked vertically, the semiconductor is sandwiched between source and drain electrodes, where the channel length is determined by the thickness of the semiconductor film. In this study, we report a VOFET with Al and Al2O3 (obtained by anodization) as electrode and dielectric of gate, respectively. The semiconductor film was obtained by spin-coating of the P3HT in chloroform. We obtained the source and drain electrodes by vacuum thermal evaporation. The use of Al and Au as source and drain, respectively, enabled the investigation of the two devices contained in the VOFET (MIM capacitor, Schottky diode and MIS capacitor). Important parameters were determinate, as dielectric capacitance (~265 nF/cm2), charrier density and mobility of P3HT (NA = 9,2 x 1016 cm-3 e μ = 1,5x10-4 cm2V-1s-1), etc. To use Sn as source electrode, the film (by evaporation) was investigated by measurements of resistance and capacitance, combined with morphological analysis by AFM. We observed that the addiction of PMMA layer on Al2O3 improves the performance of VOFET. For VOFET obtained by using Al2O3/PMMA (20 nm/14 nm) as dielectric layer, with Sn and Al as source and drain, respectively, were calculate the values of current density (Jeff = 7x10-3 mA/cm2), threshold voltage and electric field (VTH = -8V e ETH = 330 MV/m). Thereat, we obtained a VOFET by evaporation of a thin film of Sn as perforated source electrode. / FAPESP: 2013/26973-5
|
2 |
Intégration 3D de nanofils Si-SiGe pour la réalisation de transistors verticaux 3D à canal nanofilRosaz, Guillaume 11 December 2012 (has links) (PDF)
Le but de cette thèse est de réaliser et d'étudier les propriétés électroniques d'un transistor à canal nanofil monocristallin à base de Si/SiGe (voir figure), élaboré par croissance CVD-VLS, à grille enrobante ou semi-enrobante en exploitant une filière technologique compatible CMOS. Ces transistors vont nous permettre d'augmenter la densité d'intégration et de réaliser de nouvelles fonctionnalités (par exemple : des interconnections reconfigurables) dans les zones froides d'un circuit intégré. La thèse proposée se déroulera dans le cadre d'une collaboration entre le laboratoire LTM-CNRS et le laboratoire SiNaPS du CEA/INAC/SP2M et utilisera la Plateforme Technologique Amont (PTA) au sein du pôle MINATEC.
|
3 |
Développement et caractérisation d'architectures mémoires non volatiles pour des applications basse consommation / Development and characterization of non volatile memories architectures for low power applicationsBartoli, Jonathan 11 December 2015 (has links)
Avec l'évolution des technologies et le développement des objets connectés, la consommation des circuits est devenue un sujet important. Dans cette thèse nous nous concentrons sur la consommation des mémoires non volatiles à piégeage de charge. Afin de diminuer la consommation, différentes architectures ont vu le jour comme les mémoires 2T ou Split Gate. Nous proposons deux nouvelles architectures de mémoires permettant la diminution de la consommation par rapport à une mémoire Flash standard. La première, appelée ATW (Asymmetrical Tunnel Window), est composée d'une marche d'oxyde au niveau de son oxyde tunnel qui lui permet d'être moins consommatrice qu'une mémoire Flash standard. Une seconde architecture mémoire appelée eSTM (embedded Select Trench Memory) est aussi présentée. Son principal atout est la présence de son transistor de sélection qui est indispensable pour avoir une faible consommation. Grâce à son architecture, cette cellule est bien meilleure que l'architecture proposée précédemment (ATW). Une dernière étude a été réalisée afin d'optimiser le procédé de fabrication de la mémoire eSTM pour le rendre plus robuste. / With the evolution of technologies and the development of connected objects, the circuit consumption is becoming an important subject. In this thesis, we focus on the consumption of trap-charge non-volatile memories. To decrease the consumption, different architectures have emerged, like 2T or Split Gate memories. We propose two new memory architectures allowing to decrease the consumption compared to the standard Flash memory. The first, called ATW (Asymmetrical Tunnel Window), is composed of an oxide step in the tunnel oxide which allows to be less consumer than a standard Flash memory. A second memory architecture called eSTM (embedded Select Trench Memory) is also presented. Its main advantage is its select transistor which is essential to obtain a lower consumption. Thanks to its architecture, this cell is better than the previously proposed architecture (ATW). The last study has been performed to optimize the process flow of the eSTM memory to make it more robust.
|
4 |
Intégration 3D de nanofils Si-SiGe pour la réalisation de transistors verticaux 3D à canal nanofil / 3D Integration of Si/SiGe heterostructured nanowires for nanowire transistors.Rosaz, Guillaume 11 December 2012 (has links)
Le but de cette thèse est de réaliser et d’étudier les propriétés électroniques d’un transistor à canal nanofil monocristallin à base de Si/SiGe (voir figure), élaboré par croissance CVD-VLS, à grille enrobante ou semi-enrobante en exploitant une filière technologique compatible CMOS. Ces transistors vont nous permettre d’augmenter la densité d’intégration et de réaliser de nouvelles fonctionnalités (par exemple : des interconnections reconfigurables) dans les zones froides d’un circuit intégré. La thèse proposée se déroulera dans le cadre d'une collaboration entre le laboratoire LTM-CNRS et le laboratoire SiNaPS du CEA/INAC/SP2M et utilisera la Plateforme Technologique Amont (PTA) au sein du pôle MINATEC. / The goal of this thesis is to build and characterize nanowire based field-effect-transistors. These FET will have either back or wrapping gate using standard CMOS process. Theses transistors will allow us to increase the integration density in back end stages of IC's fabrication and add new functionnalities suc as reconfigurable interconnections. The thesis will be done in collaboration between LTM/CNRS and CEA/INAC/SP2M/SiNaPS laboratories using the PTA facilities located in MINATEC.
|
5 |
LATERAL AND VERTICAL ORGANIC TRANSISTORSAL-SHADEEDI, AKRAM 21 April 2017 (has links)
No description available.
|
6 |
The Organic Permeable Base Transistor:: Operation Principle and OptimizationsKaschura, Felix 25 September 2017 (has links)
Organic transistors are a core component for basically all relevant types of fully organic circuits and consumer electronics. The Organic Permeable Base Transistor (OPBT) is a transistor with a sandwich geometry like in Organic Light Emitting Diodes (OLEDs) and has a vertical current transport. Therefore, it combines simple fabrication with high performance due its short transit paths and has a fairly good chance of being used in new organic electronics applications that have to fall back to silicon transistors up to now. A detailed understanding of the operation mechanism that allows a targeted engineering without trial-and-error is required and there is a need for universal optimization techniques which require as little effort as possible. Several mechanisms that explain certain aspects of the operation are proposed in literature, but a comprehensive study that covers all transistor regimes in detail is not found. High performances have been reported for organic transistors which are, however, usually limited to certain materials. E. g., n-type C60 OPBTs are presented with excellent performance, but an adequate p-type OPBT is missing.
In this thesis, the OPBT is investigated under two aspects:
Firstly, drift-diffusion simulations of the OPBT are evaluated. By comparing the results from different geometry parameters, conclusions about the detailed operation mechanism can be drawn. It is discussed where charge carriers flow in the device and which parameters affect the performance. In particular, the charge carrier transmission through the permeable base layer relies on small openings. Contrary to an intuitive view, however, the size of these openings does not limit the device performance.
Secondly, p-type OPBTs using pentacene as the organic semiconductor are fabricated and characterized with the aim to catch up with the performance of the n-type OPBTs. It is shown how an additional seed-layer can improve the performance by changing the morphology, how leakage currents can be defeated, and how parameters like the layer thickness should be chosen. With the combination of all presented optimization strategies, pentacene OPBTs are built that show a current density above 1000 mA/cm^2 and a current gain of 100. This makes the OPBT useful for a variety of applications, and also complementary logic circuits are possible now. The discussed optimization strategies can be extended and used as a starting point for further enhancements. Together with the deep understanding obtained from the simulations, purposeful modifications can be studied that have a great potential.:1 Introduction and Motivation
2 Theory
2.1 Organic Semiconductors
2.1.1 Organic Molecules and Solids
2.1.2 Charge Carrier Transport
2.1.3 Charge Carrier Injection
2.1.4 Doping
2.2 Organic Permeable Base Transistors
2.2.1 Structure
2.2.2 Basic Operation Principle
3 Overview of Different Transistor Architectures
3.1 Organic Field Effect Transistors
3.2 Organic Permeable Base Transistors
3.2.1 Development of the Permeable Base Transistor
3.2.2 Optimization Strategies
3.3 Comparison to Inorganic Transistors
3.4 Other Emerging Transistor Concepts
3.4.1 OSBT
3.4.2 Step-Edge OFET
3.4.3 VOFET
3.4.4 IGZO Devices
4 Experimental
4.1 Materials and their Properties
4.1.1 Pentacene
4.1.2 F6TCNNQ
4.1.3 Aluminum Oxide
4.2 Fabrication
4.2.1 Thermal Vapor Deposition
4.2.2 Chamber Details and Processing Procedure
4.2.3 Sample Structure
4.3 Characterization Methods and Tools
4.3.1 Electrical Characterization
4.3.2 Morphology
4.3.3 XPS
5 Simulations and Working Mechanism
5.1 Simulation Setup
5.1.1 Overview
5.1.2 OPBT Model
5.1.3 Drift-Diffusion Solver
5.1.4 Post-Processing of Simulation Data
5.2 Basic Concept
5.2.1 Base Sweep Regions
5.2.2 Correlation with charge carrier density and potential
5.3 Charge Carrier Accumulation
5.3.1 Accumulation at Emitter and Collector
5.3.2 Current Flow
5.3.3 Area contributing to the current flow
5.4 Current Limitation Mechanisms
5.4.1 Varying Size of the Opening
5.4.2 Channel Potential
5.4.3 Limitation of Base-Emitter Transport
5.4.4 Intrinsic Layer Variation
5.5 Opening Shapes
5.5.1 Cylindrical Opening and Symmetry
5.5.2 Truncated Cone Setup
5.6 Base Leakage Currents
5.6.1 Description of the Insulator
5.6.2 Top and Bottom Contribution
5.6.3 Validity of Calculation
5.7 Analytical Description of the OPBT base sweep
5.7.1 Description of operation regions
5.7.2 Transition Voltages and Full Characteristics
5.7.3 Comparison to Experiment
5.8 Output Characteristics
5.8.1 Saturation region
5.8.2 Linear region
5.8.3 Intrinsic Gain
5.9 Summary of Operation Mechanism
6 Nin-Devices and Structuring
6.1 Effect of Accumulation and Scalability
6.1.1 Active Area and Electrode Overlap
6.1.2 Indirect Structuring
8 Contents
6.1.3 Four-Wire Measurement
6.1.4 Pulsed Measurements
6.2 Mobility Measurement
6.2.1 Mobility Extraction from a Single IV Curve
6.2.2 Verification of the SCLC using Thickness Variations
6.3 Geometric Diode
7 Optimization of p-type Permeable Base Transistors
7.1 Introduction to p-type Devices
7.2 Characteristics of OPBTs
7.2.1 Diode characteristics
7.2.2 Base sweep
7.2.3 Output characteristics
7.3 Seed-Layer
7.3.1 Process of Opening Formation
7.3.2 Performance using different Seed-Layers
7.4 Built-in field
7.4.1 Effect on Performance
7.4.2 Explanation for the Transmission Improvement
7.5 Base Insulation
7.5.1 Importance of Base Insulation
7.5.2 Additional Insulating Layers and Positioning
7.5.3 Enhancement of Native Aluminum Oxide
7.6 Complete Optimization
7.6.1 Indirect Structuring in OPBTs
7.6.2 Combination of different Optimization Techniques
7.7 Potential of the Technology
7.7.1 Future Improvements
7.7.2 Achievable Performance
7.8 Demonstration of the Organic Permeable Base Transistor
7.8.1 Simple OLED driver
7.8.2 An Astable Oscillator using p-type OPBTs
7.8.3 An OLED Driver using n-type OPBTs controlled by Organic Solar Cells
8 Conclusion / Organische Transistoren stellen eine Kernkomponente für praktisch jede Art von organischen Schaltungen und Elektronikgeräten dar. Der “Organic Permeable Base Transistor” (OPBT, dt.: Organischer Transistor mit durchlässiger Basis) ist ein Transistor mit einem Schichtaufbau wie in organischen Leuchtdioden (OLEDs) und weist einen vertikalen Stromfluss auf. Somit wird eine einfache Herstellung mit gutem Verhalten und Leistungsfähigkeit kombiniert, welche aus den kurzen Weglängen der Ladungsträger resultiert. Damit ist der OPBT bestens für neuartige organische Elektronik geeignet, wofür andernfalls auf Siliziumtransistoren zurückgegriffen werden müsste. Notwendig sind ein tiefgehendes Verständnis der Funktionsweise, welches ein zielgerichtetes Entwickeln der Technologie ohne zahlreiche Fehlversuche ermöglicht, sowie universell einsetzbare und leicht anwendbare Optimierungsstrategien. In der Literatur werden einige Mechanismen vorgeschlagen, die Teile der Funktionsweise betrachten, aber eine umfassende Untersuchung, die alle Arbeitsbereiche des Transistors abdeckt, findet sich derzeit noch nicht. Ebenso gibt es einige Veröffentlichungen, die Transistoren mit hervorragender Leistungsfähigkeit zeigen, aber meist nur mit Materialien für einen Ladungsträgertyp erzielt werden. So gibt es z.B. n-typ OPBTs auf Basis von C60, für die bisher vergleichbare p-typ OPBTs fehlen.
In dieser Arbeit werden daher die folgenden beiden Aspekte des OPBT untersucht:
Einerseits werden Drift-Diffusions-Simulationen von OPBTs untersucht und ausgewertet. Kennlinien und Ergebnisse von Transistoren aus verschiedenen Parametervariationen können verglichen werden und erlauben damit Rückschlüsse auf verschiedenste Aspekte der Funktionsweise. Der Fluss der Ladungsträger sowie für die Leistungsfähigkeit wichtige Parameter werden besprochen. Insbesondere sind für die Transmission von Ladungsträgern durch die Basisschicht kleine Öffnungen in dieser nötig. Die Größe dieser Öffnungen stellt jedoch entgegen einer intuitiven Vorstellung keine Begrenzung für die erreichbaren Ströme dar.
Andererseits werden p-typ OPBTs auf Basis des organischen Halbleiters Pentacen hergestellt und charakterisiert. Das Ziel ist hierbei die Leistungsfähigkeit an die n-typ OPBTs anzugleichen. In dieser Arbeit wird gezeigt, wie durch eine zusätzliche Schicht die Morphologie und die Transmission verbessert werden kann, wie Leckströme reduziert werden können und welche Parameter bei der Optimierung besondere Beachtung finden sollten. Mit all den Optimierungen zusammen können Pentacen OPBTs hergestellt werden, die Stromdichten über 1000 mA/cm^2 und eine Stromverstärkung über 100 aufweisen. Damit kann der OPBT für eine Vielzahl von Anwendungen eingesetzt werden, unter anderem auch in Logik-Schaltungen zusammen mit n-typ OPBTs. Die besprochenen Optimierungen können weiterentwickelt werden und somit als Startpunkt für anschließende Verbesserungen dienen. In Verbindung mit erlangten Verständnis aus den Simulationsergebnissen können somit aussichtsreiche Veränderungen an der Struktur des OPBTs zielgerichtet eingeführt werden.:1 Introduction and Motivation
2 Theory
2.1 Organic Semiconductors
2.1.1 Organic Molecules and Solids
2.1.2 Charge Carrier Transport
2.1.3 Charge Carrier Injection
2.1.4 Doping
2.2 Organic Permeable Base Transistors
2.2.1 Structure
2.2.2 Basic Operation Principle
3 Overview of Different Transistor Architectures
3.1 Organic Field Effect Transistors
3.2 Organic Permeable Base Transistors
3.2.1 Development of the Permeable Base Transistor
3.2.2 Optimization Strategies
3.3 Comparison to Inorganic Transistors
3.4 Other Emerging Transistor Concepts
3.4.1 OSBT
3.4.2 Step-Edge OFET
3.4.3 VOFET
3.4.4 IGZO Devices
4 Experimental
4.1 Materials and their Properties
4.1.1 Pentacene
4.1.2 F6TCNNQ
4.1.3 Aluminum Oxide
4.2 Fabrication
4.2.1 Thermal Vapor Deposition
4.2.2 Chamber Details and Processing Procedure
4.2.3 Sample Structure
4.3 Characterization Methods and Tools
4.3.1 Electrical Characterization
4.3.2 Morphology
4.3.3 XPS
5 Simulations and Working Mechanism
5.1 Simulation Setup
5.1.1 Overview
5.1.2 OPBT Model
5.1.3 Drift-Diffusion Solver
5.1.4 Post-Processing of Simulation Data
5.2 Basic Concept
5.2.1 Base Sweep Regions
5.2.2 Correlation with charge carrier density and potential
5.3 Charge Carrier Accumulation
5.3.1 Accumulation at Emitter and Collector
5.3.2 Current Flow
5.3.3 Area contributing to the current flow
5.4 Current Limitation Mechanisms
5.4.1 Varying Size of the Opening
5.4.2 Channel Potential
5.4.3 Limitation of Base-Emitter Transport
5.4.4 Intrinsic Layer Variation
5.5 Opening Shapes
5.5.1 Cylindrical Opening and Symmetry
5.5.2 Truncated Cone Setup
5.6 Base Leakage Currents
5.6.1 Description of the Insulator
5.6.2 Top and Bottom Contribution
5.6.3 Validity of Calculation
5.7 Analytical Description of the OPBT base sweep
5.7.1 Description of operation regions
5.7.2 Transition Voltages and Full Characteristics
5.7.3 Comparison to Experiment
5.8 Output Characteristics
5.8.1 Saturation region
5.8.2 Linear region
5.8.3 Intrinsic Gain
5.9 Summary of Operation Mechanism
6 Nin-Devices and Structuring
6.1 Effect of Accumulation and Scalability
6.1.1 Active Area and Electrode Overlap
6.1.2 Indirect Structuring
8 Contents
6.1.3 Four-Wire Measurement
6.1.4 Pulsed Measurements
6.2 Mobility Measurement
6.2.1 Mobility Extraction from a Single IV Curve
6.2.2 Verification of the SCLC using Thickness Variations
6.3 Geometric Diode
7 Optimization of p-type Permeable Base Transistors
7.1 Introduction to p-type Devices
7.2 Characteristics of OPBTs
7.2.1 Diode characteristics
7.2.2 Base sweep
7.2.3 Output characteristics
7.3 Seed-Layer
7.3.1 Process of Opening Formation
7.3.2 Performance using different Seed-Layers
7.4 Built-in field
7.4.1 Effect on Performance
7.4.2 Explanation for the Transmission Improvement
7.5 Base Insulation
7.5.1 Importance of Base Insulation
7.5.2 Additional Insulating Layers and Positioning
7.5.3 Enhancement of Native Aluminum Oxide
7.6 Complete Optimization
7.6.1 Indirect Structuring in OPBTs
7.6.2 Combination of different Optimization Techniques
7.7 Potential of the Technology
7.7.1 Future Improvements
7.7.2 Achievable Performance
7.8 Demonstration of the Organic Permeable Base Transistor
7.8.1 Simple OLED driver
7.8.2 An Astable Oscillator using p-type OPBTs
7.8.3 An OLED Driver using n-type OPBTs controlled by Organic Solar Cells
8 Conclusion
|
Page generated in 0.0955 seconds