• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer simulation of membrane bound molecules

Adcock, Stewart Alan January 2001 (has links)
No description available.
2

Antibodies to the human muscle acetylcholine receptor : their specificity and function in the foetus

Jacobson, Leslie William January 1998 (has links)
No description available.
3

The Filzig protein affects embryonic cuticle and taenidia organization in Drosophila

Geberemedhin, Mengistu Tadese January 2011 (has links)
Abstract The surface of multicellular organisms is covered with epithelial cells that provide a barrier to the external environment. As part of this barrier function, most epithelia produce apical extracellular matrices (aECMs). The generation of such chemical and physical barriers requires specialized deposition of macromolecules and is likely to involve a spatial and temporal coordination of biochemical activities at the apical surface. A challenging task is thus to characterize key proteins that underlie apical cell surface organization and correct aECM assembly. The Drosophila trachea provides an excellent system to study aECM formation, as they produce an ordered aECM, called the cuticle. The tracheal cuticle is unique by its presence of cuticular ridges, called taenidial folds, which prevent collapse of tracheal tubes while allowing them to expand and contract along their length. A gene called filzig encodes a transmembrane serine protease and is required for taenidial organization. The aim of this research was to further understand Filzig function through characterization of filzig mutants and Filzig protein expression. The results showed that Filzig is expressed in cuticle-producing epithelia as cuticle deposition begins. Moreover, Flz localized to the apical epithelial surface, as well as to the aECM. The apical Flz localization does not reflect the pattern of cuticle ridges, indicating that Flz-localization is not a determinant for taneidial patterning. Instead, Flz might act on extracellular targets that localize to the future taneidial folds. Alternatively, Filzig is involved in a cascade of self-organizing activity of cuticular components to form the regular taenidial folds.
4

NETS coordinate genome organisation and gene expression changes in T-cells and during myogenesis

Robson, Michael Ian January 2015 (has links)
Gene positioning changes with respect to the nuclear periphery correlate with their activation in a number of tissues during development. However, the determination of the function this serves or the mechanism through which this was achieved has been remarkably difficult to resolve. It may now be possible to address these questions due to the recent identification of a number of tissue-specific nuclear envelope transmembrane proteins (NETs) which are capable of promoting the repositioning of specific subsets of chromosomes and concomitantly inducing changes to gene expression (Zuleger et al,. 2013). In this thesis I describe the role of NETs in the positioning of genes to the nuclear envelope (NE) during muscle differentiation and the role this activity plays in the optimisation of myogenic gene expression in as myoblasts (MTs) differentiate to myotubes (MTs). To do this I identified four NETs with the capacity to reposition a chromosome to the periphery that are present specifically in the NEs of skeletal muscle. Using a combination of genome-wide gene expression analysis and DamID I determined that depletion of these NETs disrupted myogenic gene expression and, more significantly, prevented the targeting to and silencing of normally repressed genes at the NE. I also investigated an analogous role for the blood-specific NET TAPBPL in the regulation of the critical T-cell regulator interleukin 2 (IL-2) at the NE in T-cells. Depletion of this NET caused release of the IL2 locus from the periphery and promoted its inappropriate and long-term activation. Interestingly, depletion of TAPBPL also prevented IL2 silencing following the end of T-cell activation, suggesting this genome organisation activity is critical for the maintenance of normal T-cell function. Collectively, the results discussed herein describe a new role for NETs in the regulation of gene expression through the manipulation of spatial genome organisation and may serve as an additional layer of higher order tissue-specific gene regulation in higher organisms.
5

Membrane protein biosynthesis at the endoplasmic reticulum

Guna, Alina-Ioana January 2018 (has links)
The biosynthesis of integral membrane proteins (IMPs) is an essential cellular process. IMPs comprise roughly 20-30% of the protein coding genes of all organisms, nearly all of which are inserted and assembled at the endoplasmic reticulum (ER). The defining structural feature of IMPs is one or more transmembrane domains (TMDs). TMDs are typically stretches of predominately hydrophobic amino acids that span the lipid bilayer of biological membranes as an alpha helix. TMDs are remarkably diverse in terms of their topological and biophysical properties. In order to accommodate this diversity, the cell has evolved different sets of machinery that cater to particular subsets of proteins. Our knowledge of how the TMDs of IMPs are selectively recognized, chaperoned into the lipid bilayer, and assembled remains incomplete. This thesis is broadly interested in investigating how TMDs are correctly inserted and assembled at the ER. To address this the biosynthesis of multi-pass IMPs was first considered. Multi-pass IMPs contain two to more than twenty TMDs, with TMDs that vary dramatically in terms of their biophysical properties such as hydrophobicity, length, and helical propensity. The beta-1 adrenergic receptor (β1-AR), a member of the G-protein-coupled receptor (GPCR) family was established as a model substrate in an in vitro system where the insertion and folding of its TMDs could be interrogated. Assembly of β1-AR is not a straightforward process, and current models of insertion fail to explain how the known translocation machinery correctly identifies, inserts, and assembles β1-AR TMDs. An in vivo screen in mammalian cells was therefore conducted to identify additional factors which may be important for multi-pass IMP assembly. The ER membrane protein complex (EMC), a well conserved ER-resident complex of unknown biochemical function, was identified as a promising hit potentially involved in this assembly process. The complexity of working with multi-pass IMPs in an in vitro system prompted the investigation of a simpler class of proteins. Tail-anchored proteins (TA) are characterized by a single C-terminal hydrophobic domain that anchors them into membranes. Though structurally simpler compared to multi-pass IMPs, the TMDs of TA proteins are similarly diverse. We found that known TA insertion pathways fail to engage low-to-moderately hydrophobic TMDs. Instead, these are chaperoned in the cytosol by calmodulin (CaM). Transient release from CaM allows substrates to sample the ER, where resident machinery mediates the insertion reaction. The EMC was shown to be necessary for the insertion of these substrates both in vivo and in vitro. Purified EMC in synthetic liposomes catalysed insertion of its TA substrates in a fully reconstituted system to near-native levels. Therefore, the EMC was rigorously established as a TMD insertase. This key functional insight may explain its critical role in the assembly of multi- pass IMPs – which is now amenable to biochemical dissection.
6

The role of collagen XIII in B-cell lymphoma development, and characterization of its biosynthesis and tissue distribution

Tuomisto, A. (Anne) 25 November 2008 (has links)
Abstract Collagen XIII belongs to the subgroup of collagenous transmembrane proteins. It has a wide tissue distribution and has been localized to many sites of cell-matrix and cell-cell interaction in tissues. Biochemical and in silico analyses of collagen XIII and other collagenous transmembrane proteins revealed that the biosynthesis of this structurally varied group is characterized by a coiled-coil motif following the transmembrane domain, and these trimerization domains appear to be associated with each of the collagenous domains. The collagen XIII trimer was shown to have an interchain disulfide bond at the junction of the NC1 and COL1 domains, and several other collagenous transmembrane proteins have a pair of cysteines in the same location. Furthermore, furin cleavage at the NC1 domain can be expected in most of the proteins. Mice heterozygous for the Col13a1del transgene, encoding a mutant collagen XIII, developed clonal mature B-cell lineage lymphomas originating in the mesenteric lymph node (MLN). The incidence of disease in conventionally reared mice was 2-fold higher than for mice raised in a specific pathogen-free facility. The lymphomas often associated with large populations of macrophages and T cells. Lymphomas expressed little if any collagen XIII, suggesting that the effect of the mutation was B-cell extrinsic and likely to be associated with collagen XIII-positive tissues drained by the MLN. Studies of the small intestines of transgenic mice showed highly abnormal subepithelial basement membranes (BM), associated with heightened expression of genes involved in immune responses. These findings suggest that collagen XIII-dependent maintenance of the intestinal BM is a critical determinant of cancer susceptibility. Collagen XIII exhibited a wide tissue distribution at the protein level, and the most intense expression was found in lung. Tissues contained 1-4 collagen XIII polypeptides, their size ranging between 78 and 102 kDa. Collagen XIII staining was detected in a restricted set of blood vessels in the liver, pancreas, adrenal gland, epididymis and brain. Moreover, Col13a1del transgene expression in the absence of endogenous collagen XIII proved to be deleterious for mouse embryonal development, leading to early fetal mortality.
7

Identification and characterization of protein-protein interactions in the nuclear envelope

Vijayaraghavan, Balaje January 2017 (has links)
The nuclear envelope forms the interface between the nucleus and the cytoplasm. The nuclear envelope consists of the two concentric lipid membranes, the nuclear pores and the nuclear lamina. The inner nuclear membrane contains hundreds of unique transmembrane proteins showing high tissue diversity. Mutations of some proteins in the nuclear envelope give rise to a broad spectrum of diseases called envelopathies or laminopathies. In this thesis, I aimed to study the functional organization of the nuclear envelope by identifying and characterizing interactions between the nuclear envelope proteins. For this, we developed a novel method called the Membrane Protein Crosslink Immuno-Precipitation, which enable identification of protein-protein interactions in the nuclear envelope in live cells. We identified several novel interactions of the inner nuclear membrane protein, Samp1, and studied the interaction between the Samp1 and the nuclear GTPase, Ran in detail. Samp1 can bind to Ran and is thus the first known transmembrane Ran binding protein and Samp1 might provide a local binding site for Ran in the inner nuclear membrane. We found that Samp1 also binds to the inner nuclear membrane protein, Emerin and Ran can regulate the Samp1-Emerin interaction in the nuclear envelope. During mitosis, Samp1 distributes in the mitotic spindle. Therefore, we investigated a possible functional role of Samp1 in the mitotic machinery. Samp1 depletion resulted in aneuploid phenotypes, metaphase prolongation and decreased distribution of γ-tubulin and β-tubulin in the mitotic spindle. We found that Samp1 can bind to γ-tubulin, which is essential for the microtubule nucleation and hence for the spindle stability. The new interesting features of Samp1 provide insights on the unforeseen functions of the nuclear envelope proteins. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
8

Structural and functional studies of cell surface receptors

Border, Ellen Clare January 2012 (has links)
Receptor proteins on the surfaces of cells equip them to communicate with each other and to sense and interact with their environment. One receptor family, the αβ T-cell receptors (TCRs), allow T lymphocytes to detect and respond to pathogens via interactions with antigen-presenting major histocompatibility complex (MHC) molecules on target cells. A degree of TCR cross-reactivity (e.g. through structural similarity between peptide-MHC (pMHC) complexes) is essential to account for all possible pathogens, but can also lead to the misinterpretation of self antigens as foreign, and thereby elicit an autoimmune response, resulting in diseases such as multiple sclerosis (MS). Structural studies of pMHC and TCR-pMHC complexes have been key to developing of an understanding of the molecular basis of TCR cross reactivity, and the first strand of this thesis describes attempts to express and purify a highly cross-reactive MS patient-derived TCR for structural characterisation. The formation, purification and crystallisation of a TCR-self pMHC complex including another autoreactive TCR is also described. Another family of receptors, the fibronectin leucine-rich transmembrane proteins (FLRTs), has been implicated in roles in embryonic development including cell sorting and adhesion. In the second strand of this thesis, the nature of homotypic interactions between FLRTs, which may underlie adhesion between FLRT transfected cells, is investigated. Biophysical analyses demonstrate that these interactions may be mediated by the extracellular leucine-rich repeat (LRR) domain, and crystal structures of all three FLRT LRR domains suggest how interactions between them may underlie FLRT self-association at the cell surface. Residues which contribute to these interactions are conserved across different members of the FLRT family and different species. These findings confirm that FLRTs induce homotypic cell-cell adhesion, and suggest that this behaviour is mediated by self association at the cell surface via the LRR domain.
9

Développement de la technologie "transMembraChip" : biopuces à membranes pour la réinsertion et le criblage d'agonistes / antagonistes de protéines membranaires / Development of the TransMembraChip technology membrane biochips for reinsertion and screening of membrane protein agonists antagonists

Chadli, Meriem 16 July 2018 (has links)
Ces travaux de thèse concernent le développement d'une biopuce à membranes permettant de réincorporer de manière fonctionnelle une protéine transmembranaire de la famille des récepteurs couplés aux protéines G (RCPG), CXCR4, dans une bicouche lipidique attachée et espacée sur un substrat d'or par pilotis peptidiques (pep-tBLM), sous un format miniaturisé et parallélisé. Le peptide pilotis utilisé, P19-4H, possède une cystéine en position N-terminale pour son greffage covalent sur la surface d'or et quatre résidus Histidine en position C-terminale pour l'attachement par chélation, en présence de Nickel, de protéoliposomes réintégrant CXCR4. La synthèse de cette protéine s'effectue par expression acellulaire sous forme de protéoliposomes, dans une composition lipidique adaptée et en présence d'un lipide chélatant, le DOGS-NTA, à 2% de la quantité molaire totale des lipides. Le peptide AH, un peptide fusogène, est utilisé dans une dernière étape pour fusionner les protéoliposomes attachés. La caractérisation approfondie des protéoliposomes et l'optimisation des conditions expérimentales ont permis d'aboutir à l'attachement robuste des protéoliposomes avec une densité lipidique suffisante pour leur fusion par le peptide AH et la formation d'une pep-tBLM réintégrant CXCR4. Des études de recouvrement de fluorescence après photoblanchiment (FRAP) ont montré que la pep-tBLM réinsérant CXCR4 était fluide, homogène et continue, avec un coefficient de diffusion de 2.10-7 cm2/s. Des études d'interaction entre CXCR4 et un ligand antagoniste, le T22, ont révélé que la protéine s'insère dans la pep-tBLM de manière fonctionnelle et orientée. Le processus de formation de la pep-tBLM a été miniaturisé par microstructuration du support consistant à recouvrir la surface d'or de polystyrène puis à former des micropuits exposant la surface d'or en leur fond. Le peptide P19-4H a été déposé de manière contrôlée dans les micropuits à l'aide d'un robot de dépôt pour former des plots de pep-tBLM intégrant CXCR4. La fonctionnalité de CXCR4 réinsérée dans ces plots de membranes a été attestée par des études d'interaction avec son ligand T22. L'ensemble des étapes de formation, d'optimisation et de miniaturisation des pep-tBLM a été suivi, visualisé et caractérisé en temps réel et sans marquage par la technique d'imagerie par résonance plasmonique de surface (SPRi). La technologie « TransMembraChip » développée au cours de cette thèse représente une méthode de choix pour la réincorporation et l'étude fonctionnelle de protéines transmembranaires dans une composition lipidique adaptée. Les protéines transmembranaires, en particulier les RCPG, représentent des cibles thérapeutiques intéressantes. Ainsi, dans le cadre de la recherche de candidats médicaments pour le traitement de pathologies impliquant des protéines transmembranaires, cette nouvelle génération de biopuce à membranes constitue un outil prometteur adapté au criblage de ligands agonistes ou antagonistes de ces protéines / This thesis presents the development of a membrane biochip allowing to functionally reincorporate a transmembrane protein of the G-protein coupled receptor (GPCR) family, CXCR4, in a peptide-tethered bilayer lipid membrane (pep-tBLM), in a miniaturized and parallelized format. The peptide tether used, P19-4H, possesses a cysteine in its N-terminal extremity for covalent grafting onto the gold surface and four Histidine residues in its C-terminal extremity for attachment of proteoliposomes integrating CXCR4 by metal-chelate interaction in the presence of nickel. The synthesis of CXCR4 was carried out by cell-free expression in the form of proteoliposomes, in a suitable lipid composition and in the presence of a chelating lipid, DOGS-NTA, at 2% molar ratio. The AH peptide, a fusogenic peptide, was employed in a last step to fuse the attached proteoliposomes. The thorough characterization of proteoliposomes and the optimization of experimental conditions led to the robust attachment of proteoliposomes with sufficient lipid density to perform their fusion by the AH peptide and the formation of a pep-tBLM integrating CXCR4. Fluorescence recovery after photobleaching (FRAP) studies have shown that the pep-tBLM reinserting CXCR4 was fluid, homogeneous and continuous, with a diffusion coefficient of 2 x 10-7 cm2/s. Ligand binding studies between CXCR4 and T22, an antagonist, revealed that the protein was functional and well-oriented in the peptBLM. The formation process of the pep-tBLM was miniaturized by support microstructuration, consisting in covering the gold surface with polystyrene and then, forming microwells exposing the gold surface at their bottom. The P19-4H peptide was spotted in a controlled manner into the microwells to form microspots of pep-tBLM incorporating CXCR4. The functionality of CXCR4 reinserted into these membrane microspots was confirmed by T22 ligand binding studies. All the steps of formation, optimization and miniaturization of the pep-tBLM were monitored, visualized and characterized by surface plasmon resonance imaging (SPRi), a real time and label-free technique for the detection of interactions. The "TransMembraChip" technology developed in this work represents a method of choice for the reincorporation and functional study of transmembrane proteins in a suitable lipid composition. Transmembrane proteins, particularly GPCRs, form interesting therapeutic targets. Thus, in the context of pharmaceutical research of drug candidates for the treatment of pathologies involving transmembrane proteins, this new generation of membrane biochip is a promising tool for screening agonist or antagonist ligands of these proteins
10

Polymer Supported Lipid Bilayer Membranes for the Integration of Transmembrane Proteins

Renner, Lars 04 May 2009 (has links) (PDF)
This work reports on the successful formation of supported multicomponent lipid bilayer membranes (sLBMs) from natural occurring lipids as well as synthetic lipids on a set of polymer cushions consisting of alternating maleic acid copolymers. Maleic acid copolymers provide a versatile platform to adjust the physico-chemical behaviour by the choice of the comonomer unit. The formation of sLBMs was triggered by a transient reduction of the electrostatic repulsion between the polymer cushions and the lipid vesicles by lowering the solutions pH to 4. Upon formation the stability of sLBMs was not affected by subsequent variations of the environmental pH to 7.2. Even drastic changes in the environmental pH (between pH 2 and pH 9) did not lead to delamination and proved the stability of the polymer sLBM. The degree of hydrophilicity and swelling of the anionic polymer cushions was found to determine both the kinetics of the membrane formation and the mobility of the lipid bilayer with lipid diffusion coefficients in the range from 0.26 to 2.6 µm2 s-1. An increase in cushion hydrophilicity correlated with a strong increase in the diffusion coefficient of the lipids. This trend was found to correlate with the kinetics of bilayer formation in the process of vesicle spreading. The observations strongly support the important role of the support’s polarity for the fluidity of the sLBM, which is probably related to the presence of a water layer between support and bilayer. The investigated polymer cushions are considered to open new options for the in situ modulation of lipid bilayer membranes characteristics to match the requirements for the successful integration of functional transmembrane proteins (TMPs). As each cushion exhibits different physico-chemical properties, the resulting behaviour of the sLBMs and TMPs could be exactly adjusted to the specific requirements of biological samples. This is exemplarily shown by the integration of the TMP beta amyloid precursor protein cleaving enzyme (BACE). Integrated BACE was observed to be mobile on all polymer cushions. On the contrary, no lateral mobility of BACE was found in solid sLBM. Furthermore, the activity of integrated BACE was analysed by the cleavage of an amyloid precursor protein analogue. Remarkably, the polymer cushions did not only enhance the mobility but were also found to increase the activity of BACE by a factor of 1.5 to 2.5 in comparison to solid sLBM. From the obtained results it is obvious that even small cytoplasmic domains of transmembrane proteins might not be preserved upon the integration in silica sLBM. The observed beneficial effects of the utilised polymer cushions on the mobility and activity of transmembrane proteins motivate further studies to clarify the general applicability of the polymer platform. Altogether, this polymer platform provides valuable options to form sLBM with varying characteristics to reconstitute transmembrane proteins for a wide range of possible future applications in biology. / Die vorliegende Arbeit beschreibt die Bildung von polymer unterstützten Lipiddoppelschichten zur Integration von transmembranen Proteinen. Das Polymerkissensystem besteht aus alternierenden Maleinsäurecopolymeren. Lipiddoppelschichten wurden durch die Steuerung der elektrostatischen Repulsion erzeugt: die Verringerung des pH-Wertes auf 4 wurde eine Erhöhung der adsorbierten Vesikelmenge auf den Polymeroberflächen induziert. Nach der erfolgten Bildung der Lipiddoppelschichten kann der pH-Wert beliebig variiert werden, ohne dass die Stabilität der Lipiddoppelschichten beeinflusst wird. Auch drastische Veränderungen des pH-Milieus (pH 2 - pH 9) führten zu keinen Veränderungen in der Membranintegrität. Der Grad der Hydrophilie und der Quellung der anionischen Polymerschichten beeinflusst sowohl die Bildung der Modellmembranen als auch die Mobilität der integrierten Lipidmoleküle. Dabei reichen die erzielten Lipiddiffusionskoeffizienten von 0.26 bis 2.6 µm2 s-1. Dabei ist die Mobilität direkt von der Hydrophilie des Substrates abhängig. Die beobachteten Ergebnisse zeigen deutlich die entscheidende Rolle der Polarität der verwendeten Substratoberflächen auf die Lipidmobilität, die sehr wahrscheinlich mit der Präsenz einer variablen Wasserschicht zusammenhängt. Die untersuchten Polymerkissen eröffnen neue Möglichkeiten für die insitu Modulierung der Charakteristika von Lipidschichten, um funktionale transmembrane Proteine zu integrieren. Aufgrund der unterschiedlichen physiko-chemischen Eigenschaften kann das Verhalten der Lipidschichten und der transmembranen Proteine nach den spezifischen Anforderungen des Modellsystems angepasst werden. Die funktionale Integration wurde am Beispiel des transmembranen Proteins BACE nachempfunden. Die Mobilität des integrierten BACE wurde auf allen Polymerkissen beobachtet. Im Gegensatz dazu wurde auf harten Substraten keine BACE Mobilität gefunden. Die Aktivität des integrierten BACE wurde durch die enzymatische Spaltung eines APP-Analogons nachgewiesen. Bemerkenswerteweise wurde ein Anstieg der BACE Aktivität auf den Polymerkissen um den Faktor 1,5 bis 2,5 im Vergleich zu den auf harten Substraten integrierten BACE beobachtet. Zusammenfassend, die verwendeten Polymerkissen bieten vielfältige Möglichkeiten Lipidschichten mit variierenden Eigenschaften für die Integration von transmembranen Proteinen zu erzeugen.

Page generated in 0.0886 seconds