• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réalisation d'un micro-écran OLED haute luminance / Realization of a high brightness OLED micro-display

Guillamet, Sébastien 26 June 2015 (has links)
Ce travail porte sur la réalisation d'un micro-écran OLED haute luminance sur silicium. L'efficacité limitée des structures WOLED associées à des filtres colorés est un frein au développement de cette technologie pour des applications dans des dispositifs de type « see-through ». Nous proposons une approche tirant parti de l'effet de microcavité optique présent dans les écrans OLED à émission vers le haut pour générer des couleurs sans filtres. Les modulations de cavité à l'échelle du sous-pixel étant assurées par l'insertion d'oxyde transparent conducteur entre l'anode et l'OLED.L'étude offre selon un raisonnement cohérent de suivre les différentes phases de la réalisation d'un démonstrateur de ce type. Seront abordées dans la première partie les étapes technologiques de structuration de l'oxyde à l'échelle d'un sous-pixel de 16µm². Nous traiterons ensuite du développement d'un empilement OLED tandem utilisant des émetteurs fluorescent et phosphorescents. Une approche par simulation optique sera utilisée pour l'optimisation de cette architecture à un fonctionnement sur microcavité. Puis la discussion autour de la mise en commun des blocs technologiques précédents permettra d'aborder des écueils spécifiques au micro-écran OLED et de proposer des pistes de résolution. / This study focuses on the realization of a high brightness OLED micro-écran on silicon. The limited efficiency of White-OLED combined with color filters prevents the use of this technology in “see-through” applications. We propose a novel approach getting benefits from the optical micro-cavity effect in Top-Emitting OLED to generate colors without using color filters. Cavity modulations at a sub-pixel scale are realized by using a Transparent Conducting Oxide between the anode and the OLED.Following a step-by-step reasoning the work offers to follow all the phases of the realization of a prototype using this principle. In the first part, the technological steps of the processing of oxide cavities with a surface of 16µm² will be discussed. Then we will work on the development of a tandem OLED structure using both fluorescent and phosphorescent emitters optimized for micro-cavities. To this end optical simulation will be used. The two technological blocs will finally be put together to enlighten some issues specific for micro-écran technology and to give some clues to solve them.
2

Etude d'oxydes métalliques nanostructurés (ZnO,SnO2) pour applications photovoltaïques, notamment oxydes transparents conducteurs et cellules solaires à colorant / Investigation of nanostructured metallic oxides (ZnO, SnO2) for photovoltaic applications, namely transparent conductive oxides and dye solar cells

Rey, Germain 23 May 2012 (has links)
Les nanostructures d'oxydes métalliques jouent un rôle essentiel dans les cellules photovoltaïques à colorants, puisque ces matériaux permettent la réalisation du contact électrique transparent en face avant et de la photoanode. L'oxyde stannique (SnO2) et l'oxyde de zinc (ZnO) ont été employés respectivement, car leurs propriétés optiques, électroniques et structurales sont particulièrement bien adaptées aux cellules solaires à colorant. Le contact électrique transparent, obtenu par pyrolyse d'aérosol, se présente sous forme d'une couche mince de SnO2 dopé par du fluor composée de grains nanométriques. Les propriétés électriques et optiques de ce composant ont été optimisées en vue de son intégration dans des cellules à colorants. Une étude approfondie du transport électronique au sein de la couche a permis de quantifier l'influence des différents mécanismes de diffusion suivant les cas considérés. La photoanode a été réalisée, directement à la surface de la couche mince de SnO2, par dépôt chimique de nanofils de ZnO à partir de précurseurs en phase vapeur. Le diamètre et la densité surfacique des nanofils sont contrôlés respectivement par les conditions de croissance et le degré d'oxydation du substrat. Les photoanodes à base de nanofils ont été intégrées dans des cellules à colorant. La limitation des performances de ces cellules est due à la faible surface développée par le ZnO qui conduit à la fixation d'une trop faible quantité de colorant à la surface de ce dernier. Afin de remédier à ce problème, des nanoparticules de ZnO ont été élaborées par bain chimique à la surface des nanofils. Les cellules solaires à base de structures composites présentent des performances supérieures à celles réalisées à partir de nanofils ou de nanoparticules. Les photoanodes composites permettent d'obtenir à la fois un transport efficace des électrons et de développer une surface importante et de ce fait, elles présentent des performances prometteuses. / Metallic oxide nanostructures play a critical role in dye-sensitized solar cells as front transparent electrodes and photoanodes. The use of stannic oxide (SnO2) and zinc oxide (ZnO) have been motivated by their particularly suitable structural, electrical and optical properties for dye-sensitized solar cells. Fluorine doped-SnO2 transparent electrodes have been deposited by spray pyrolysis in the form of thin films and consist of nanoscale grains. Their optical and electrical properties have been optimized in order to integrate them into dye-sensitized solar cells. The electron transport has been investigated in details and the influence of each scattering mechanism has quantitatively been assessed. ZnO photoanodes have directly been grown on the SnO2 surface by chemical vapor deposition in the form of nanowires. The nanowire diameter and surface density have been controlled by the growth conditions and the substrate surface oxidation, respectively. The nanowire-based photoanodes have subsequently been integrated into dye-sensitized solar cells. The relatively low efficiency of these cells has been found to be due to the small ZnO surface area, which limits the amount of dye anchored to its surface. In order to circumvent this limitation, ZnO nanoparticles have been deposited on the nanowire surface by chemical bath deposition. The nanocomposite photoanodes lead to the fabrication of dye-sensitized solar cells with promising efficiency by combining both efficient electron transport and high developed surface area.
3

Conception, élaboration et intégration d'électrodes transparentes optimisées pour l'extraction des charges dans des dispositifs photovoltaïques. / Conception, synthesis and integration of transparent electrodes optimized for charge collection in photovoltaic devices.

Tosoni, Olivier 18 December 2013 (has links)
Les oxydes transparents conducteurs (TCO) ont la rare propriété de concilier haute transparence et conductivité élevée, ce qui en fait des matériaux-clés pour de nombreuses applications requérant des électrodes transparentes comme les cellules photovoltaïques, les diodes organiques et les écrans plats. Avec une résistivité de l'ordre de 10^(-4) ohm.cm et une transmittance de 85% dans le domaine visible, l'oxyde d'indium dopé à l'étain (ITO) est le matériau privilégié. Toutefois, sa fragilité, son instabilité aux procédés plasma et son coût croissant du fait de sa haute teneur en indium sont autant de raisons de rechercher des matériaux alternatifs. Cette thèse a pour but de comprendre les points clefs permettant d'améliorer les performances d'une électrode transparente en oxyde de zinc dopé à l'aluminium (AZO) sur les plans optique, électrique et au niveau des interfaces ; des cellules photovoltaïques en silicium amorphe hydrogéné (a-Si:H) servent de dispositif-test à cette étude. Réalisées par pulvérisation cathodique magnétron sous des conditions de dépôt variées, les couches minces d'AZO obtenues ont une structure microcristalline et, pour des paramètres déterminés, des performances optoélectroniques approchant celles de l'ITO. Un modèle adapté d'après la théorie de Drude a permis de rendre compte du lien entre transparence et conduction et de confirmer la saturation en porteurs du matériau. L'efficacité d'une électrode au sein d'un dispositif dépend également très fortement de l'interface entre celle-ci et l'absorbeur, les porteurs devant être extraits rapidement pour ne pas se recombiner. Quelques voies ont été explorées pour réduire la barrière de potentiel entre le silicium amorphe et l'électrode tout en favorisant l'efficacité optique des cellules. Il ressort que l'insertion d'une couche tampon d'oxyde de titane ou de tungstène permet d'obtenir un gain notable dans les performances des cellules. / Because of their unique ability to reconcile high transparency with good electrical conductivity, transparent conductive oxides (TCOs) are key materials in many applications such as organic light-emitting diodes, photovoltaic solar cells or flat displays. With its resistivity of a few 10^(-4)$ ohm.cm and its 85% transmittance in the visible range, Indium Tin Oxide (ITO) dominates the TCO market. Yet, it is brittle, unstable to plasma processes and its cost is rising due to its high indium content, encouraging research on alternative materials. This thesis aims at understanding key points to improve the performance of an aluminum-doped zinc oxide (AZO) transparent electrode on the optical, electrical and interface levels; hydrogenated amorphous silicon (a-Si:H) photovoltaic solar cells serve as a test device in this study. We obtain microcrystalline AZO thin films by magnetron sputtering under various deposition conditions ; for certain parameters, performances are close to ITO. An adapted model after the Drude theory allowed to account for the link between transparency and conduction and to confirm that the material is saturated by charge carriers. The effectiveness of an electrode within a device also strongly depends on its interface with the absorber layer, since the charge carriers have to be rapidely extracted in order to avoid recombination. Some ways have been explored to reduce the potentiel barrier between amorphous silicon and the electrode, still favoring optical efficiency of the cells. It appears that the insertion of a buffer layer of titanium or tungsten oxide enables a sensible improvement in the cells' efficiencies.

Page generated in 0.0775 seconds