Spelling suggestions: "subject:"cotransport layer"" "subject:"cotransport mayer""
11 |
The Study of Electrochemical Deposited PANI Thin Nano-film for Organic Solar CellsTsai, Cheng-liang 13 August 2010 (has links)
This research is to synthesize PANI (polyaniline) thin film for polymer organic solar cells as a hole transport layer on the top of ITO substrate by using electrochemical (cyclic voltammetry) method. The device structure is ITO (150 nm) / PANI (50 nm) / P3HT: PCBM (100 nm) / Al (200 nm). We investigated surface morphology, conductivity, and light transmission of the PANI thin film from different aniline monomer concentration and studied the factors on device efficiency, also compared with the device structured with hole transport layer PEDOT:PSS.
In this study, we found PANI thin films synthesized with different aniline monomer concentration, their light transmission over 80% at the range of 450 nm ~ 650nm wavelength and the conductivity up to 0.6 S/cm. It shows that PANI thin film suitably act as hole transport layer. In addition, we found morphology of PANI thin film that varied with different aniline monomer concentration.
The power conversion efficiency of the device mainly affected by morphology with different aniline monomer concentration. Comparing to other parameters of concentration, the 0.3M aniline monomer concentration polymerized PANI thin film owned the most appropriate surface morphology, and the power conversion efficiency up to 1.76%.
|
12 |
An Investigation on Detecting Applications Hidden in SSL Streams using Machine Learning TechniquesMcCarthy, Curtis 13 August 2010 (has links)
The importance of knowing what type of traffic is flowing through a network is
paramount to its success. Traffic shaping, Quality of Service, identifying critical
business applications, Intrusion Detection Systems, as well as network administra-
tion activities all require the base knowledge of what traffic is flowing over a network
before any further steps can be taken. With SSL traffic on the rise due to applica-
tions securing or concealing their traffic, the ability to determine what applications
are running within a network is getting more and more difficult. Traditional methods
of traffic classification through port numbers or deep packet inspection have been
deemed inadequate by researchers thus making way for new methods. The purpose
of this thesis is to investigate if a machine learning approach can be used with flow
features to identify SSL in a given network trace. To this end, different machine
learning methods are investigated without the use of port numbers, Internet Protocol
addresses, or payload information. Various machine learning models are investigated
including AdaBoost, Naive Bayes, RIPPER, and C4.5. The robustness of the results
are tested against unseen datasets during training. Moreover, the proposed approach
is compared to the Wireshark traffic analysis tool. Results show that the proposed ap-
proach is very promising in identifying SSL traffic from a given network trace without
using port numbers, Internet protocol addresses, or payload information.
|
13 |
Cooperative End-to-end Congestion Control in Heterogeneous Wireless NetworksMohammadizadeh, Neda 20 August 2013 (has links)
Sharing the resources of multiple wireless networks with overlapped coverage areas has a potential of improving the transmission throughput. However, in the existing frameworks, the improvement cannot be achieved in congestion scenarios because of independent congestion control procedures among the end-to-end paths. Although various network characteristics make the congestion control complex, this variety can be useful in congestion avoidance if the networks cooperate with each other. When congestion happens in an end-to-end path, it is inevitable to have a packet transmission rate less than the minimum requested rate due to congestion window size adjustments.
Cooperation among networks can help to avoid this problem for better service quality. When congestion is predicted for one path, some of the on-going packets can be sent over other paths instead of the congested path. In this way, the traffic can be shifted from a congested network to others, and the overall transmission throughput does not degrade in a congestion scenario. However, cooperation is not always advantageous since the throughput of cooperative transmission in an uncongested scenario can be less than that of non-cooperative transmission due to cooperation costs such as cooperation setup time, additional signalling for cooperation, and out-of-order packet reception. In other words, a trade-off exists between congestion avoidance and cooperation cost. Thus, cooperation should be triggered only when it is beneficial according to congestion level measurements.
In this research, our aim is to develop an efficient cooperative congestion control scheme for a heterogeneous wireless environment. To this end, a cooperative congestion control algorithm is proposed, in which the state of an end-to-end path is provided at the destination terminal by measuring the queuing delay and estimating the congestion level. The decision on when to start/stop cooperation is made based on the network characteristics, instantaneous traffic condition, and the requested quality of service (QoS). Simulation results demonstrate the throughput improvement of the proposed scheme over non-cooperative congestion control.
|
14 |
Performance of Network Redundancy in SCTP : Introducing effect of different factors on Multi-homingAli, Rashid January 2010 (has links)
The main purpose of designing the Stream Control Protocol (SCTP) was tooffer a robust transfer of traffic between the hosts over the networks. For this reasonSCTP multi-homing feature was designed, in which an SCTP sender can access destinationhost with multiple IP addresses in the same session. If the primary path between the sourceand the destination is down, the traffic may still be sent to the destination by utilizingredundant path. And SCTP multi-homing also supports for the concurrent multipathtransfer of traffic. This paper introduces the effect of different network factors likeconcurrent cross traffic, congestion control algorithms and SACK timers on multi -homingfeature of SCTP. Throughput and end-to-end packet delay were used as performancemetrics to introduce the effect of these factors. From the study it was introduced thatconcurrent cross traffic in the network behaves same on multi -homed interfaces and bothinterfaces were affected almost same. It was concluded that congestion control algorithmsalso affects on multi-homing, the RED congestion control algorithm reduced delay andimproved throughput of the SCTP multi-homing. In RFC4960 recommended SACK timeris 200ms, but when 100ms SACK timer was used with concurrent multipath transfer inSCTP (CMT-SCTP) multi-homing, the high throughput and low delay was achieved ascompared with 200ms and 300ms, which indicated that different SACK timers affects onmulti-homing feature of SCTP. All the simulation works have been conducted in NS2network simulator.
|
15 |
On the security of TLS and IPsec : Mitigation through physical constraints / Om säkerheten hos TLS och IPsec : Lindring genom fysiska begränsningarReimers, Erik January 2015 (has links)
TLS and IPsec are two protocols that provide secure communication on the Internet. They provide similar services but operate on different levels. This report compiles some of thecurrent known vulnerabilities that exist in those two protocols. It also describes attacks that exploit those vulnerabilities. Based on the vulnerabilities this paper gives guidelines onhow to avoid them when implementing TLS and IPsec. This paper also demonstrates a proof-of-concept that shows how IPsec can be configured to avoid some of the vulnerabilities. Theproof-of-concept also shows how IPsec can be used to setup a secure connection between two peers, using Near Field Communication, on an ad hoc network.
|
16 |
Nouvelles approches pour les communications multichemins / Novel approaches for multipath communicationsCoudron, Matthieu 12 December 2016 (has links)
La dépendance des différentes infrastructures vis-à-vis du réseau Internet va croissant. D’abord la convergence des médias mais bientôt l’Internet des objets ou les véhicules autonomes peut-être vont contribuer à augmenter la criticité d’Internet. Il est donc important de résoudre les problèmes liés à l’infrastructure actuelle, en terme de passage à l’échelle, de confidentialité ou bien de fiabilité. Les communications multichemins font partie des possibilités pour attaquer ce défi. Pour autant la transition vers ces technologies n’est pas sans difficulté. En effet certains équipements bloquent les protocoles inconnus, empêchant ainsi l’émergence de nouvelles technologies. C’est un phénomène en partie responsable de l’ossification d’internet. D’autres considérations techniques limitent l’intérêt de recourir à des technologies multichemins dans certains cas, puisque celles-ci peuvent alors présenter des performances moindres que les technologies monochemins. Dans le cadre de cette thèse, nous proposons des réponses à certains de ces cas afin de maximiser le spectre d’application des technologies multichemins, en particulier du protocole Multipath TCP (MPTCP). Plus précisémement, après une revue détaillée du domaine des communications multichemins, nous proposons une réponse au problème de découverte des chemins. De plus, motivés par l’intuition que les ordonnanceurs peuvent s’appuyer sur les latences unidirectionelles, afin de lutter contre l’arrivé de paquets dans le désordre, nous proposons une technique qui ne modifie que l’envoyeur de données pour estimer cette métrique. En outre, nous proposons un outil qui maximise le débit tout en prenant en compte des politiques utilisateur par exemple pour forcer l’envoi d’une partie du trafic sur un chemin peu performant mais qui va coûter moins cher à l’utilisateur. Finalement, nous développons et évaluons un modèle de MPTCP. / The criticity of the Internet keeps increasing with a very high number of services depending on its infrastructure. The Internet is expected to support services with an increasing tangible impact on the physical world such as the Internet of Things (IoT) or autonomous vehicles. It is thus important to address the current infrastructure shortcomings in terms of scalability, confidentiality and reliability. Multipath communications are one possible solution to address this challenge. The transition towards multipath technologies is not obvious, there are several challenges ahead. Some network devices block unknown protocols, thus preventing the emergence of new technologies, which plays a part in what is often referred to as the ossification of the Internet. Moreover, due to technical reasons, there are cases for which multipath technologies perform worse than their single path counterpart. In this thesis, we are interested in addressing some of these cases and limit their impact, so that multipath communications perform better than single path communications as often as possible. More specifically, we propose enhancements to Multipath TCP (MPTCP). After a detailed survey of multipath communications across all layers, we propose an answer as to the question of how many paths to use and how to ensure proper forwarding. Moreover, motivated by the intuition that packet arrival disorder can be mitigated by the knowledge of one way latencies, we propose a latency estimator with sender-side modifications only. Furthermore, as throughput maximization is in general solved regardless of the interface cost or user preferences, we elaborate a framework capable of presenting more complex strategies if for instance the user wants to enforce throughput even on less efficient paths. Finally, we develop and present a complete simulation model of MPTCP.
|
17 |
Studies of nano-carbon hole transport layer for high performance photovoltaic devices / ナノカーボンホール輸送層を利用した高性能太陽電池デバイスに関する研究Wang, Feijiu 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第19829号 / エネ博第335号 / 新制||エネ||67(附属図書館) / 32865 / 京都大学大学院エネルギー科学研究科エネルギー応用科学専攻 / (主査)教授 松田 一成, 教授 佐川 尚, 教授 大垣 英明 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
|
18 |
Metric-based Rate Control for Transport Protocols in Multi-hop Wireless NetworksDuong, Le Minh 12 July 2012 (has links) (PDF)
In recent years, Multi-hop Wireless Networks (MHWNs) have experienced an explosion of deployment due to the increasing demand for continuous connectivity regardless of the physical location. Internet predominant transport protocols, i.e. Transmission Control Protocol (TCP), face performance degradation in MHWNs because of the high loss and link failure rates. Several solutions have been proposed which are based on network state estimation or use information from MAC layer (called metrics) in a cross-layer manner to better comprehend the network state. The first part of this thesis provides a survey and comprehensive definition of common metrics from Physical, MAC, Network and Transport layers and thus provides a multi-criteria and hierarchical classification. After that, the effectiveness in reflecting network information of MAC metrics is also investigated in a systematic way by simulating various network situations and measuring the MAC metrics. Thus, the good MAC metric for congestion control which is coupled with the network contention level and the medium induced losses will be found out. From the results of the effectiveness study, new rate control schemes for transport protocols are proposed which adapt efficiently the source bit rate depending on the network condition provided by some MAC metrics. Through an extensive set of simulations, the performance of the proposed rate control schemes in MHWNs is investigated thoroughly with several network situations.
|
19 |
Post-Quantum Public Key Cryptography for the Internet of ThingsMagnusson, Olof, Hurtig, Mats January 2019 (has links)
Recent progress in the field of quantum computers provide radically improved muscles to search and sort in lists, solve systems of equations and prime factorize – virtues that inflict an immediate threat to the most common systems for public key cryptography used in a vast proportion of today’s computer networks. NTRUEncrypt is a lattice-based cryptography system which inhibits quantum computers for breaking the algorithm in polynomial time. The cryptographic algorithm is one of the seventeen that passed the first round in the NIST Post-Quantum standardisation competition which serves an indication that this system is robust against the efforts from a cryptanalysist to compromise its security properties. With the development of a server and client application that is built using Python3 integrated with WolfSSL, the results obtained from the experiment show that the suggested model acquires the capabilities to overcome the quantum computers capacities, providing fast quantum-safe asymmetric encryption algorithm for TLS communication in smart homes. The handshake process with NTRUEncrypt and WolfSSL is proven to be significantly faster comparing to other algorithms tested.
|
20 |
Micro-Computed Tomography Reconstruction and Analysis of the Porous Transport Layer in Polymer Electrolyte Membrane Fuel CellsJAMES, JEROME 02 February 2012 (has links)
A procedure is presented to analyze select geometric and effective properties of the porous transport layer (PTL) of the polymer electrolyte membrane fuel cell (PEMFC) in com- pressed and uncompressed states using micro-computed X-ray tomography (Micro CT). A method of compression using a novel device design was employed to mimic the non-homogeneous compression conditions found in functioning fuel cells. The process also features open source image processing and CFD analysis through the use of software packages Fiji and OpenFOAM (proprietary software is also used such as Matlab). Tomographic images of a PTL sample in different compressive states are first analyzed by measuring local porosity values in the through-plane and both in- plane directions. The objective of this study was to develop a method for imaging the PTL structure to show directionality within its properties using relatively inexpensive and non-destructional means. Three different PTL types were tested, one without any additives, one with Polytetrafluoroethylene (PTFE) and one with PTFE and a microporous layer (MPL). Non-homogeneous porosity was shown to exist with the highest and least variable porosity values obtained from the in-plane direction that was in-line with the direction of fibres. Porosity values compared well with values obtained from the literature. The profile of the PTL with MPL added was unattainable using this procedure as the resolution of the Micro CT was too low to resolve its pore space.
The next stage involved the effective properties analysis which included effective electronic conductivity and effective diffusivity. It was found that the through-plane values for the effective electronic conductivity study were higher than expected. The ratio between through-plane and in-plane was found to be much higher than expected from literature. Lack of sufficient resolution of fibre contacts has been shown to play a role in this discrepancy. These contact problems were shown not too affect measurements of diffusivity in the pore phase. The in-plane direction parallel to the direction of fibres was found to have the highest values of effective transport properties. Effective diffusivity ratios of between 0.1 and 0.37 were found to be reasonable with the limited experimental evidence found in literature. The it was found that the Bruggeman relation for calculating diffusivity and percolation theory by Tomadakis and Sotirchos over predicted the values for diffusion within the PTL and it is suggested that these theories are not suitable for predicting diffusivity for this material. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-02-02 15:46:29.395
|
Page generated in 0.065 seconds