Spelling suggestions: "subject:"cotransport dde phonon"" "subject:"cotransport dee phonon""
1 |
Etude théorique des propriétés thermiques et thermoelectriques des nanorubans de graphène / Theoretical study of thermal and thermoelectric properties of graphene nanoribbonsMazzamuto, Fulvio 24 November 2011 (has links)
Le graphène planaire se présente comme un des matériaux les plus prometteurs pour la nanoélectronique de demain, grâce particulièrement à sa conductivité thermique et sa mobilité électronique qui sont les plus élevées jamais mesurées dans un solide. Parmi ses allotropes, le graphène découpé en nanorubans est une des formes les plus intéressantes, notamment pour les possibilités d'ingénierie de bandes qu'il offre. Ses propriétés électroniques et vibrationnelles sont fortement influencées par la présence des bords et s’éloignent de celles du graphène planaire. A ce jour, ses propriétés thermiques et thermoélectriques ont été encore peu explorées. Dans ce travail de thèse, grâce à une modélisation atomistique du réseau cristallin, les modes de vibration caractéristiques de chaque type de ruban ont été identifiés et, dans le cadre du formalisme des fonctions de Green hors équilibre, le transport de ces modes a été simulé. On a ainsi évalué les propriétés thermiques des nanorubans en identifiant les types de rubans offrant la plus forte conductance thermique pour envisager une meilleure gestion de la chaleur dans les dispositifs du futur. Dans la direction opposée, des techniques de nanostructuration du ruban permettent de dégrader le transport des phonons et d’amplifier la figure de mérite thermoélectrique en bénéficiant simultanément d'un phénomène de transport électronique résonant. En exploitant ces techniques, un premier dispositif thermoélectrique basé sur les nanorubans de graphène a été conçu et ses performances ont été évaluées par une approche multi-échelle. La possibilité de très forte densité d’intégration du graphène fait l’intérêt d’un tel dispositif qui pourrait fournir des puissances électriques ou de refroidissement très supérieures à celles des dispositifs thermoélectriques actuels. / 2D graphene is one of the most promising materials for nanoelectronics; its thermal conductivity and electronic mobility are the highest ever measured in solids. Among its allotropes, graphene cut in nanoribbons (GNRs) is one of the most interesting structures because it offers possibilities of bandgap engineering. Electronic and vibrational properties of GNRs are strongly affected by the presence of the edges and can differ significantly from those of 2D graphene. Up to now, their thermal and thermoelectric properties have been rarely explored. In this thesis, using an atomistic model of crystal lattice, the vibrational modes associated to each type of ribbon have been identified and via the formalism of nonequilibrium Green’s functions, the transport of these modes has been simulated. We have evaluated the better ribbon structures in terms of thermal conductance for a better heat management in future devices and circuits. On the other side we have identified some particular nanostructured ribbons where the thermoelectric figure of merit is strongly amplified thanks to both the degradation of phonon conductance and the occurring of resonant electron transport. A first thermoelectric device based on such GNRs has been designed and its performance has been evaluated using a multi-scale approach. This device becomes interesting in the case of high integration density of GNRs.
|
2 |
Etude théorique des propriétés thermiques et thermoelectriques des nanorubans de graphèneMazzamuto, Fulvio 24 November 2011 (has links) (PDF)
Le graphène planaire se présente comme un des matériaux les plus prometteurs pour la nanoélectronique de demain, grâce particulièrement à sa conductivité thermique et sa mobilité électronique qui sont les plus élevées jamais mesurées dans un solide. Parmi ses allotropes, le graphène découpé en nanorubans est une des formes les plus intéressantes, notamment pour les possibilités d'ingénierie de bandes qu'il offre. Ses propriétés électroniques et vibrationnelles sont fortement influencées par la présence des bords et s'éloignent de celles du graphène planaire. A ce jour, ses propriétés thermiques et thermoélectriques ont été encore peu explorées. Dans ce travail de thèse, grâce à une modélisation atomistique du réseau cristallin, les modes de vibration caractéristiques de chaque type de ruban ont été identifiés et, dans le cadre du formalisme des fonctions de Green hors équilibre, le transport de ces modes a été simulé. On a ainsi évalué les propriétés thermiques des nanorubans en identifiant les types de rubans offrant la plus forte conductance thermique pour envisager une meilleure gestion de la chaleur dans les dispositifs du futur. Dans la direction opposée, des techniques de nanostructuration du ruban permettent de dégrader le transport des phonons et d'amplifier la figure de mérite thermoélectrique en bénéficiant simultanément d'un phénomène de transport électronique résonant. En exploitant ces techniques, un premier dispositif thermoélectrique basé sur les nanorubans de graphène a été conçu et ses performances ont été évaluées par une approche multi-échelle. La possibilité de très forte densité d'intégration du graphène fait l'intérêt d'un tel dispositif qui pourrait fournir des puissances électriques ou de refroidissement très supérieures à celles des dispositifs thermoélectriques actuels.
|
3 |
Thermal engineering in an epitaxial nanostructured germanium semiconductor / Ingénierie thermique dans un semi-conducteur nanostructure par épitaxie à base de germaniumLiu, Yanqing 16 November 2015 (has links)
Ce travail de thèse porte sur les propriétés de transport thermique liées aux phonons dans un nouveau matériau nanostructuré constituée de couches minces de Ge:Mn de type "electron crystal - phonon glass". Ce matériau est élaboré par épitaxie par jets moléculaire au CEA/INAC à Grenoble sur des substrats spécifiques « Germanium-on-insulator (GOI) ». Il consiste en une matrice de germanium possédant une qualité cristalline parfaite dans laquelle sont inclues une importante concentration de nano-inclusions de Ge3Mn5 de forme quasi-sphérique. Révélé par les caractérisations de TEM, les nano-inclusions ont une distribution de diamètre variant de 5 à 50 nm. Il est par ailleurs possible de jouer sur les paramètres de croissance afin de modifier la dispersion de taille des inclusions ainsi que leur concentration. Cette possibilité nous a donc permit d'étudier l'influence des nano-inclusions sur le transport de chaleur de façon exhaustive autour de la température ambiante.Pour ce faire, une expérience de mesure de conductivité thermique « 3 omega » dédiée à ces échantillons et extrêmement sensible, a été fabriquée à l'institut Néel. Cette expérience nous a permis de mesurer les variations de conductivité thermique induites par la modification de la distribution en taille des nano-inclusions de Ge:Mn dans des couches minces d'une centaine de nanomètre d'épaisseur avec une erreur réduite d'environ 12%. Il a été montré que le transport thermique dans ces couches minces pouvait être réduit d'un facteur 20 comparé au germanium massif puisque des valeurs de conductivité thermique de l'ordre de 3 W.m-1.K-1 ont été mesurées. Ces valeurs ont été confirmées par des expériences SThM au CETHIL de Lyon. Les valeurs obtenues sont mêmes en dessous de la limite d'alliage pour le SiGe, ce qui n'est pas explicable par les théories actuelles. Ces faibles conductivités thermiques ainsi que la grande mobilité des porteurs dans le germanium font de ces matériaux à base de GeMn de bons candidats pour la thermoélectricité. Des simulations numériques ont été utilisées afin de mieux comprendre cette diminution spectaculaire de la conductivité thermique et d'interpréter les données expérimentales. / This PhD project is an exhaustive study on the characterization of the thermal properties of a new type semiconducting materials based on germanium. It is a germanium matrix containing nano-inclusions with the objective of creating a perfect "electron crystal - phonon glass" material. The materials are thin films of an epitaxial germanium matrix embedded with Ge:Mn nano-inclusions, grown on a Germanium-on-insulator (GOI) substrate in CEA/INAC in Grenoble. From TEM images of the thin films it has been demonstrated that both the matrix and inclusions are monocrystalline, and the nano-inclusions have generally a spherical form with a diameter distribution ranging from 5 to 50 nm. Depending on the growth parameters in molecular beam epitaxy, i.e. the Mn concentration and the annealing temperature, the geometries, mean diameters and diameter distributions of nano-inclusions in Ge:Mn can be varied. With these unique structural features, these Ge:Mn thin films are one of the most interesting models for the study of the influence of nano-inclusions on thermal transport in a crystalline matrix.The characterization of the thermal properties of the material have been done using two advanced techniques: the 3-omega method in Institut Néel, and the Scanning Thermal Microscopy (SThM) in CETHIL (Centre d'Energétique et de Thermique de Lyon) in Lyon. A highly sensitive differential 3-omega measurement setup has been developed in the work, which permits precise (error~12%) measurements of electrical conductive thin films having low thermal conductivities. Dramatically reduced thermal conductivities have been revealed for Ge:Mn thin films containing different Mn% and having different inclusion geometries at room temperature, compared to crystalline bulk Ge. A minimum value of 3.3 Wm-1K-1 was found for Ge:Mn thin film containing 10% Mn, beating the “alloy limit” of thermal conductivity set by SiGe alloys at room temperature (6-12 Wm-1K-1). The measurement results of SThM confirmed the low thermal conductivities for all Ge:Mn/GOI samples at room temperature. Numerical simulations using different models have been performed to try to interpret the experimental results and to understand the mechanisms of the influence of the nano-inclusions on the phonon transport in semiconductor materials.
|
Page generated in 0.0799 seconds