• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 11
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Förslag till modell av kemikaliespridning i mark anpassad för användning vid räddningsinsats - Kemspill Mark 4.0

Alsterhag, Elin January 2005 (has links)
After emergencies involving chemical spills it is of great importance that correct measures are taken with short notice, both for the security of people and in order to minimize future environmental consequences. The RIB-unit at the Swedish Rescue Services Agency initiated this study, the aim of which is to propose changes to the existing chemical transport calculation tool: Chemical Spill 3.4, included in RIB - Integrated Decision Support for Civil Protection, so that it can be used for decision support as well as in preventive work. A rough estimation of chemical transport in the subsurface is considered being of great importance when making decisions during emergency response operations. The proposition presented in this report is a non site specific chemical transport model which is designed to give a rough estimation of NAPL flow in homogenous isotropic soil shortly after an instantaneous release. The model can be used at two levels; both in situations without access to information on subsurface properties, and with more accuracy in situations with knowledge of the included parameters. For that reason the user can choose among predefined alternatives or assign the parameters a numeric value to increase the quality of the model output. The predefined alternatives are represented by default values for different parameters in the model. Suggested model output are vertical and horizontal transport of NAPL phase, horizontal transport of dissolved chemical in the aqueous phase, as well as the amounts of spill that are evaporated and entrapped in the soil, all at the time specified by the user. Moreover the maximum transport of the chemical phase and time to groundwater pollution are given. To make the uncertainty of the model clear for the user the results are given as the most likely value together with the smallest and largest values that can be expected. Equations presented in this report describe a selection of subsurface processes which occur after a release of chemicals. The selection is made with the aim to reach satisfying result when the model is used within its domain without making the model complicated for the user. Therefore simplifying assumptions have been made in the descriptions of some processes while some other processes are neglected. Simplifications have been based on recognized references or on theoretical arguments, but the overall performance of the model as well as some of the default input parameters need to be further tested and validated before the new version of the model can be included in RIB. However, compared with the existing version Chemical Spill 3.4 several changes have been suggested; including additional processes, development of default values and making model uncertainty clear to the user. These changes are thought to significantly improve the existing model. / Vid olyckor med kemikalieutsläpp är det av stor vikt att rätt åtgärder snabbt vidtas, både för människors säkerhet och för att minimera framtida miljökonsekvenser. Räddningsverkets RIB-enhet initierade den här studien vars mål är att ge förslag på modellteknisk förbättring av det befintliga beräkningsprogrammet Kemspill Mark 3.4, som ingår i programpaketet RIB - Integrerat beslutsstöd för skydd mot olyckor, så att det i framtiden kan användas som beslutsstöd vid räddningsinsats efter kemikalieutsläpp samt vid förebyggande planeringsarbete. En grov vägledning om kemikaliens spridning anses vara av stor betydelse för att räddningstjänsten ska kunna fatta rätt beslut vid en insats. Förslaget som presenteras i denna rapport är en icke platsspecifik spridningsmodell anpassad för vätskor med begränsad löslighet i vatten och ger en grov uppskattning av spridning i homogen och isotrop mark inom några timmar efter ett momentant utsläpp. Modellen ska kunna användas på två nivåer; för att ge en mycket grov uppskattning av spridningen även utan tillgång på uppgifter om markegenskaper, samt med större noggrannhet då informationen finns. Med anledning av detta kommer användaren ges möjlighet att välja bland fördefinierade alternativ eller att ange indata numeriskt för att öka noggrannheten. De fördefinierade valen representeras av typvärden för olika parametrar i modellen. Den nya modellen i förslaget ger vid angiven tid vertikal och horisontell spridning av fri kemikaliefas, horisontell spridning av löst förorening i vattenfas samt hur stor andel av utsläppet som hålls kvar i marken respektive har avdunstat från spillytan. Dessutom anges kemikaliefasens maximala spridning och hur lång tid det tar för utsläppet att nå grundvattnet. För att tydliggöra modellens osäkerhet för användaren ges utdata som det mest sannolika värdet tillsammans med det största och minsta värdet som är sannolikt. Ekvationerna som presenteras i rapporten beskriver ett urval av de processer som sker i marken vid ett kemikalieutsläpp. Urvalet har gjorts med utgångspunkt att uppnå tillfredställande resultat inom modellens domän utan att komplicera för användaren och därmed har förenklande antaganden gjorts för att beskriva vissa förlopp medan andra försummats helt. Förenklingarna har grundats på vedertagna referenser eller på teoretiskt resonemang. Validering av modellresultat samt vissa typvärdens intervall krävs före inkludering i RIB. Jämfört med det befintliga Kemspill Mark 3.4 har dock stora förändringar föreslagits; fler processer inkluderas, typvärden utvecklas och modellens osäkerhet görs tydlig för användaren. Förändringar tros medföra en signifikant förbättring av modellen.
22

ON THE SIMULATION AND PREDICTION OF BED MORPHOLOGICAL ADJUSTMENTS OF EQUILIBRIUM IN ALLUVIAL MEANDERING STREAMS

DAI, WEN HONG 05 January 2009 (has links)
This thesis concerns the computation of bed adjustments of equilibrium in alluvial meandering streams. It is assumed that the channel centerlines follow sine-generated curves, the banks are rigid, and the steady-state flow is turbulent and sub-critical. The flow width is assumed to remain constant in the streamwise direction, and the flow width-to-depth ratio is large (>=15, say). The bed material is cohesionless and homogeneous. The purpose of the thesis is to develop and test a numerical model for the computation of bed development, given the aforementioned idealized conditions. The model comprises: 1- an initial bed topography generator, to generate the bed at time t = 0 of the calculations; 2- the vertically-averaged hydrodynamic model of Zhang (2007) to calculate the flow fields; and 3- a sediment transport model to relate the bed deformation to the flow. Both the initial bed topography generator (expression of the deformed bed surface) and the numerical sediment transport model based on the sediment transport continuity equation are original and developed entirely by the author. The resulting model is computationally very efficient. In contrast to previous works on the theoretical determination of bed deformation, the beds at the beginning of the calculations may represent any stage of the development process, and not necessarily the initial flat bed. The bed deformation was tested for several test cases, devised on the basis of laboratory runs available in the literature. These include Run ME-2 by Hasegawa (1983) in a 30-degree-channel, Run 3 by Binns (2006) in a 70-degree-channel and the run by Termini (1996) in a 110-degree-channel. The erosion/deposition patterns of the computed equilibrium bed topographies were found to be in reasonable agreement with their measured counterparts. However, as evidenced by the difference plots included in this thesis, in detail there are substantial differences between the computed and measured equilibrium beds, especially in the regions near the banks. As a by-product of the present thesis, the functions representing the parameters required by the hydrodynamic model of Zhang (2007) were also evaluated. In particular, the present results suggest that the coefficient Alpha-q appearing in the expression of the local friction factor (used in the flow model of Zhang 2007) depends on the flow width-to-depth ratio and bed roughness to a much larger extent than previously thought. Considering this, a generalization of the expression of Alpha-q due to El-Tahawy (2004) (and adopted by Zhang 2007 in her model) is proposed. Future work should be carried out to address the application of the present model to real river conditions, including generalizations to irregular meandering plan shapes, unsteady-state flows and non-homogenous bed materials. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2008-12-19 21:32:06.645
23

Chemical Feedback From Decreasing Carbon Monoxide Emissions

Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., Martinez Alonso, S., Vitt, F., Anderson, J. L., Alkemade, F., Houweling, S., Edwards, D. P. 16 October 2017 (has links)
Understanding changes in the burden and growth rate of atmospheric methane (CH4) has been the focus of several recent studies but still lacks scientific consensus. Here we investigate the role of decreasing anthropogenic carbon monoxide (CO) emissions since 2002 on hydroxyl radical (OH) sinks and tropospheric CH4 loss. We quantify this impact by contrasting two model simulations for 2002-2013: (1) a Measurement of the Pollution in the Troposphere (MOPITT) CO reanalysis and (2) a Control-Run without CO assimilation. These simulations are performed with the Community Atmosphere Model with Chemistry of the Community Earth System Model fully coupled chemistry climate model with prescribed CH4 surface concentrations. The assimilation of MOPITT observations constrains the global CO burden, which significantly decreased over this period by similar to 20%. We find that this decrease results to (a) increase in CO chemical production, (b) higher CH4 oxidation by OH, and (c) similar to 8% shorter CH4 lifetime. We elucidate this coupling by a surrogate mechanism for CO-OH-CH4 that is quantified from the full chemistry simulations.
24

Modeling the effects of heterogeneous reactions on atmospheric chemistry and aerosol properties

Wei, Chao 01 December 2010 (has links)
In this thesis, a new aerosol module is developed for the STEM model (the Sulfur Transport and dEposition Model) to better understand the chemical aging of dust during long range transport and assess the impact of heterogeneous reactions on tropospheric chemistry. The new aerosol module is verified and first applied in a box model, and then coupled into the 3-Dimentional STEM model. In the new aerosol model, a non-equilibrium (dynamic or kinetic) approach to treat gas-to-particular conversion is employed to replace the equilibrium method in STEM model. Meanwhile, a new numerical method solving the aerosol dynamics equation is introduced into the dynamic aerosol model for its improved computational efficiency and high accuracy. Compared with the equilibrium method, the new dynamic approach is found to provide better results on predicating the different hygroscopicity and chemical aging patterns as a function of size. The current modeling study also takes advantage of new findings from laboratory experiments about heterogeneous reactions on mineral oxides and dust particles, in order to consider the complexity of surface chemistry (such as surface saturation, coating and relative humidity). Modeling results show that the impacts of mineralogy and relative humidity on heterogeneous reactions are significant and should be considered in atmospheric chemistry modeling with first priority. Finally, the upgraded 3-D STEM model is utilized to explore the observations from the Intercontinental Chemical Transport Experiment - Phase B (INTEX-B). The new dynamic approach for gas-to-particular conversion and RH-dependent heterogeneous uptake of HNO3 improve the model performance in term of aerosol predictions under different conditions. It is shown that these improvements change the modeled nitrate and sulfate concentrations, but also modify their size distributions significantly.
25

Charakterizácia tenkovrstvových solárnych článkov a analýza mikroštruktúrnych defektov / Thin-Film Solar Cells Characterization and Microstructure Defect Analysis

Škvarenina, Ľubomír January 2021 (has links)
Thin-film solar cells based on an absorber layer of chalcogenide compounds (CIGS, CdTe) are today among the most promising photovoltaic technologies due to their long-term ability to gain a foothold in mass commercial production as an alternative to conventional Si solar cells. Despite this success, the physical origin of the defects present in the thin films are still insufficiently elucidated, especially in the compounds of the chalcopyrite family Cu(In_{1x},Ga_{x})(S_{y},Se_{1y})_{2}. The research focuses on the identification and analysis of microstructural defects responsible for the electrical instability of chalcopyrite-based thin-film solar cells with a typical heterostructure arrangement ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se_{2}/Mo. The non-uniform polycrystalline nature of semiconductor materials in this complex multilayer structure requires a comprehensive analysis of electro-optical, structural and compositional properties associated with the actual morphology at the macroscopic, microscopic or even nanoscopic level. The observed predominant ohmic or non-ohmic current conduction in the dark transport characteristics was also reflected in the slope deviations of the excessive noise fluctuations, which were in the spectral domain exclusively in the form of flicker noise with dependency S_{i} ~ f^{1}. Spatially resolved electroluminescence based on stimulated photon emission by charge carriers injecting into the depletion region, not only showed a significantly inhomogeneous distribution of intensity in planar heterojunction under forward bias, but also revealed light emitting local spots in reverse bias due to a trap-assisted radiative recombination through the high density of defect states. Microscopic examination of the defect-related light emitting spots revealed rather extensive defective complexes with many interruptions through the layers, especially at the heterojunction CdS/Cu(In,Ga)Se_{2} interface. Besides, the high leakage current via these defective complexes subsequently led to a considerable local overheating, which caused a clearly observable structural and morphological changes, such as deviations in absorber layer stoichiometry due to Cu–In–Ga–Se segregation, Cu-rich and Ga-rich grains formation with an occurrence of Se-poor or Cu_{x}Se_{y} secondary phases regions, material redeposition accompanied by evaporation of ZnO:Al/i-ZnO/CdS layers together with the formation of Se structures on the surface around the defects. Within the research, analytical modelling of transport characteristics was implemented with parameters extraction of individual transport mechanisms to understand the non-ohmic shunt behaviour due to leakage current. In addition to the proper current path along the main heterojunction, the proposed model contains parasitic current pathways as a consequence of recombination-dominated charge transport or current conduction facilitated by multi-step tunnelling via high density of mid-gap defect states in the depletion region, ohmic leakage current caused by pinholes or low-resistance paths along grain boundaries in Cu(In,Ga)Se_{2}, or space-charge limited current due to metals diffusion from the ZnO:Al layer and grid Ag contacts through disruptions in i-ZnO/CdS layers.
26

Modeling the Longevity of Infiltration System for Phosphorus Removal.

Yu, Lin January 2011 (has links)
A new modeling method for estimation of the longevity of infiltration system was suggested in this study. The model was one-dimensional, based on results from long-term infiltration sites in Sweden, taking some physical and chemical parameters as controlling factors. It defines the longevity of infiltration systems as the time during which the P solution in effulent is under national criteria (1 mg/L in this study), and it aims at providing the longevity for any given point of the infiltration system. The soil in the model was assumed to be totally homogenous and isotropic and water flow was assumed to be unsaturated flow and constant continuous inflow. The flow rate was calculated from the Swedish criteria for infiltration systems. The dominant process in the model would be the solute transport process; however, retardation controlled by sorption would play a more important role than advection and dispersion in determining the longevity in the model. By using the definition of longevity in this study, the longevity of the three soil columns at 1 m depth (Knivingaryd, Ringamåla and Luvehult) were 1703 days, 1674 days and 2575 days. The exhaustion time of the three soil columns under inflow of 5 mg/L were 2531 days, 2709 days and 3673 days. The calculated sorbed phosphorus quantity for soil from sites Kn, Lu and Ri when they reach estimated longevity were 0.177, 0.288 and 0.168 mg/g, while the maximum sorption of Kn, Lu and Ri were 0.182, 0.293 and 0.176 mg/g separately. From the result of sensitivity study of the model, the sorption capacity and flow velocity were most important to the longevity of the infiltration system. Lower flow velocity and higher P sorption capacity extend the longevity of an infiltration bed. Due to the sorption isotherm selected in this study and the assumption of instant equilibrium, the sorption rate of the soil column was quite linear, although the estimated longevity was much shorter than the real exhaustion time of the soil column. In fact the soil has almost reached its sorption maximum when the system reaches its longevity.
27

Development of a distributed sediment routing model for extreme rainfall-runoff events / 極端な降雨流出事象を対象とする分布型土砂追跡モデルの開発

Luis Enrique, CHERO VALENCIA 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23479号 / 工博第4891号 / 新制||工||1764(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 立川 康人, 准教授 市川 温, 教授 角 哲也 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
28

Silnice I/42 VMO Žabovřeská I. / Road I/42 VMO Žabovřeská I.

Kaderka, Tomáš January 2012 (has links)
Master’s thesis focuses on verification of software functions of modelling software Aimsun and his behavior on model of real traffic situation at the Brno Large city circuit in the stretch of road I/42 Žabovřeská I. Describes possible ways of transport surveys and some of them applies to a given section. From the survey results is compiled model in software Aimsun and traffic situation is assessed in several variants. Based on the results are proposed next steps to find solution of traffic situation in a given section.
29

Coupling Sediment Transport And Water Quality Models

Xiong, Yi 10 December 2010 (has links)
Sediment has profound effects on water quality. Correspondingly, water quality modeling often needs sediment transport modeling. However, simplified descriptive sediment transport was originally employed for water quality modeling, and the linkage between sediment transport models and water quality models is less developed. Therefore, the main purposes of this study were to develop general methods of coupling sediment transport and water quality models and to improve sediment transport modeling for water quality modeling. Linkage of sediment transport and water quality was discussed and a comprehensive sediment transport literature review was conducted. SEDDEER (Sediment Deposition and Erosion), a stand-alone sediment and contaminant fate and transport model, which simulates one water box and the underlying multiple sediment bed layers, was developed. SEDDEER for Visual Basic for Application (SEDDEER_VBA) was written in VBA. SEDDEER for FORTRAN (SEDDEER_FOR) is the corresponding FORTRAN model. To improve WASP in terms of sediment transport, SEDDEER_FOR was incorporated into the WASP TOXI7 module as the starting point to generate the coupled WASP model (WASP_SEDDEER). Verification and validation of SEDDEER_VBA were conducted prior to model application and incorporation. A comprehensive model test was performed to show that SEDDEER_FOR is computationally identical to SEDDEER_VBA. Simple tests were carried out to verify the fluxes across the sediment-water interface and ensure that the coupling of the WASP water column and SEDDEER bed models is correct. The testing results indicated that these models were verified and/or validated. SEDDEER was used to evaluate the effects of sediment on contaminant transport. WASP_SEDDEER, WASP7.4, and EFDC were applied to Mobile Bay to demonstrate the capabilities of WASP_SEDDEER, and WASP_SEDDEER produced a reasonable and consistent modeling result. The results of the study indicated that SEDDEER can be used for one-box sediment and contaminant fate and transport modeling, and also incorporated into water quality models. In addition, WASP_SEDDEER coupling was implemented correctly and can be applied to the real world. Finally, study results show that sediment affects contaminant fate and transport mostly by external forcing and flow conditions, and contaminant fate and transport varies with different sediment and contaminant characteristics and sediment transport processes.
30

Contributions to an Improved Oxygen and Thermal Transport Model and Development of Fatigue Analysis Software for Asphalt Pavements

Jin, Xin 2009 August 1900 (has links)
Fatigue cracking is one primary distress in asphalt pavements, dominant especially in later years of service. Prediction of mixture fatigue resistance is critical for various applications, e.g., pavement design and preventative maintenance. The goal of this work was to develop a tool for prediction of binder aging level and mixture fatigue life in pavement from unaged binder/mixture properties. To fulfill this goal, binder oxidation during the early fast-rate period must be understood. In addition, a better hourly air temperature model is required to provide accurate input for the pavement temperature prediction model. Furthermore, a user-friendly software needs to be developed to incorporate these findings. Experiments were conducted to study the carbonyl group formation in one unmodified binder (SEM 64-22) and one polymer-modified binder (SEM 70-22), aged at five elevated temperatures. Data of SEM 64-22, especially at low temperatures, showed support for a parallel-reaction model, one first order reaction and one zero order reaction. The model did not fit data of SEM 70-22. The polymer modification of SEM 70-22 might be responsible for this discrepancy. Nonetheless, more data are required to draw a conclusion. Binder oxidation rate is highly temperature dependent. Hourly air temperature data are required as input for the pavement temperature prediction model. Herein a new pattern-based air temperature model was developed to estimate hourly data from daily data. The pattern is obtained from time series analysis of measured data. The new model yields consistently better results than the conventional sinusoidal model. The pavement aging and fatigue analysis (PAFA) software developed herein synthesizes new findings from this work and constant-rate binder oxidation and hardening kinetics and calibrated mechanistic approach with surface energy (CMSE) fatigue analysis algorithm from literature. Input data include reaction kinetics parameters, mixture test results, and pavement temperature. Carbonyl area growth, dynamic shear rheometer (DSR) function hardening, and mixture fatigue life decline are predicted as function of time. Results are plotted and saved in spreadsheets.

Page generated in 0.0752 seconds