• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 11
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Depth averaged numerical modelling in channel bends

Rainbird, Peter Charles Bruce January 1996 (has links)
No description available.
2

Denitrification and ozone loss in the Arctic stratosphere

Davies, David Stewart January 2003 (has links)
This thesis investigates the mechanism of denitrification o f the Arctic lower stratosphere and the impact o f denitrification on ozone loss using the SLIMCAT chemical transport model. The development of a new microphysical model for the simulation of growth and sedimentation of large nitric acid trihydrate particles is also described. Model simulations of Arctic denitrification were carried out using thermodynamic equilibrium schemes based on the sedimentation of either nitric acid trihydrate or ice using different meteorological analyses. The severity and extent of denitrification in ice-based model runs was found to be highly sensitive to the meteorological analyses used whereas nitric acid trihydrate denitrification schemes exhibited considerably less sensitivity. The response of thermodynamic equilibrium and microphysical NAT-based denitrification to meteorological conditions has been studied in a series of short idealised simulations. It was found that microphysical denitrification was considerably more sensitive to the relative orientation of the polar vortex flow and the region of cold temperatures. A concentric vortex and cold region are required to promote the long particle growth times required for strong denitrification in the microphysical model. Reduced rates of denitrification were evident in the microphysical model at the highest altitudes. Results from the microphyical denitrification scheme were compared with in-situ and remote observations of denitrification for two recent cold Arctic winters. There was remarkable agreement between model and observations of both the magnitude and location of denitrification despite the simple volume-averaged nucleation rate used in the model. The limited range of observations did not allow further constraints to be placed on the microphysical model. Denitrification was found to enhance Arctic ozone loss by up to 30% during 1999/2000. Sensitivity studies o f the impact of denitrification on Arctic ozone loss were performed using thermodynamic nitric acid trihydrate denitrification schemes. Cumulative ozone depletion was found to increase non-linearly with increasing denitrification. Enhanced recovery of chlorine radicals to hydrogen chloride in strongly denitrified model runs offset reduced recovery to chlorine nitrate, limiting the impact of denitrification to the equivalent of 20 days additional ozone loss.
3

The influence of ocean dynamics on the air-sea flux of carbon dioxide and nutrient transport

McLaren, Alison Jane January 1999 (has links)
No description available.
4

Improving Constraints on Aerosols in the United States Using Ground Based Observations, Satellite Retrievals, and a Chemical Transport Model

Raman, Aishwarya, Raman, Aishwarya January 2017 (has links)
Knowledge of distributions of aerosols is critical to human health, Earth's radiative budget, and air quality. However, the lack of sufficient direct measurements of aerosol type, number, mass concentrations and current limitations of satellite retrievals make it challenging to accurately model the aerosol variability. Such measurement gaps also hinder evaluation of aerosol source budget from emission inventories, modeling of aerosol chemistry, and sinks. In this context, the first study characterizes the potential of multivariate relationships between Aerosol Optical Depth (AOD), a quantity that represents light extinction by aerosols in the atmospheric column and a suite of surface and atmospheric parameters (e.g., vegetation, precipitation, fire characteristics) in order to assess trends in AOD anomalies for the U.S Southwest. This study covers the area that experiences North American Monsoon (NAM) and examines trends in AOD across different aerosol sources in this region such as dust storms, biomass burning, and anthropogenic emissions. We find that aerosols from anthropogenic processes and biomass burning exhibited a strong declining trend in AOD whereas trends along the NAM alley were obfuscated by the monsoon precipitation (sink) and convective dust storms (sources). In the second study, we develop constraints to improve characterization of anthropogenic apparent Elemental Carbon (ECa) using coemitted combustion products such as Carbon Monoxide (CO) and Nitrogen Oxides (NOx). We compare observational ratios of ECa vs CO and ECa vs NOx against those from emission inventories. We find that the observational ratios have increased at sites in the Urban-West due to increase in ECa from 2000-2007 to 2008-2015. Further, emission ratios do not match with observational ratios. We recommend that rigorous efforts are needed to better quantify and monitor the changes in these species in the Urban-West particularly for non-road and residential combustion sectors. The final study of this dissertation discusses a technique to produce forecasts of AOD by combining satellite retrievals and a chemical transport model in an analog based framework. We use model forecasts of AOD, particulate matter (PM) concentrations, and meteorological parameters from Weather Research and Forecasting model with Chemistry (WRF-Chem) to train the framework for choosing analogs (past forecasts similar to current simulations). MODIS Terra and Aqua satellite retrievals of AOD for analog days are then used in a Kalman Filter (KF) framework to determine the forecast error and referred to as KFAN. The analog based estimates better forecasts of AOD for the Western US compared to the East and the mean bias in AOD forecasts are reduced to the range of 0.001-0.1. The reduction in positive bias in AOD is drastic and the method captures the decrease in AOD from morning to afternoon. We find that higher root mean square error (RMSE) values in the East are due to the inability of KFAN to capture the AOD peaks during biomass burning episodes and AOD lows during days of high precipitation rates. A systematic statistical analysis using step-wise linear regression models also show that in the East, there is a stronger dependence of aerosol loading on meteorological factors such as air temperature, precipitation, and relative humidity. As a consequence, overall quality of the analogs in the East is impacted when uncertainties in the simulated meteorological fields are higher. Overall, this study shows that the correlative information from multi-satellite remote sensing retrievals and models provide additional constraints on aerosols using composition/source identification (e.g., aerosol type, landcover, emission sources, fuel consumption), coemitted gas phase species (e.g., CO and NOx), and meteorological parameters (e.g., wind speed, TPW). The synergy of information from these datasets can be beneficial for design of future remote sensing missions, deployment of ground networks, and studies related to feedbacks between meteorology and aerosols.
5

Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

El Gharamti, Mohamad 12 1900 (has links)
Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.
6

Modeling Total Suspended Solids in Combined Sewer Systems

Zhang, Weilan 01 May 2012 (has links)
The untreated overflow of combined sewer system contains a variety of pollutants that can contaminate the receiving water body. Total suspended solids (TSS) transported in the sewer networks can adsorb these pollutants and become the main contaminant source. Existing models contain a numerous formulas that make the calculation process complex and time consuming. A simplified model was presented in this thesis to simulate the process of TSS transport in combined sewer pipes. The combined sewer system evaluated was a combination of an existing sewer system in Le Marais and an example system provided with the Storm Water Management Model (SWMM). SWMM was used in this research to simulate the rainfall event, pollutant build-up and wash-off process, and to provide hydraulic calculations for the combined sewer system. A spreadsheet model was created to calculate the TSS concentration profile and flow velocity profile. The total TSS transport rate was computed using a numerical estimation of the integral of the concentration in the cross-section area multiplied by the velocity. The flow depth, velocity, and Froude number of each pipe was calculated to show that the combined sewer system was under proper working conditions. The first flush phenomenon was observed by plotting the TSS concentration pollutograph of the combined sewer system. From the TSS transport pollutograph, the maximum transport rate was found (0.2609 kg/s at 6:45). The study of TSS profile showed that the concentration distribution was based on the solid density. The TSS particle also affected the transport rate. A sensitivity analysis of particle size was conducted in this thesis. A second order polynomial was used to describe the relationship between median particle size d50¬ ¬and TSS transport rate.
7

Validation of a Public Transport Model / Validering av en kollektivtrafikmodell

Aho, Yousef, de Jong, Johannes January 2020 (has links)
During 2018, the Public Transport Administration (Trafikförvaltningen) in the Stockholm region spent approximately 2.2 billion SEK on new infrastructure investments related to the public transport system, many of which were based on their public transport models. The previously used method for validating these models has lacked scientific rigour, efficiency and a systematic approach, which has led to uncertainty in decision making. Furthermore, few scientific studies have been conducted to develop validation methodologies for large-scale models, such as public transport models. For these reasons, a scientific validation methodology for public transport models has been developed in this thesis. This validation methodology has been applied on the 2014 route assignment model used by Trafikförvaltningen, for the transport modes bus, commuter train and local tram. In the developed validation methodology, the selected validation metrics called MAPE, %RMSE and R^2 are used to compare link loads from a route assignment model with observed link loads from an Automatic Passenger Counting (APC) system. To obtain an overview of the performance of the route assignment model, eight different scenarios are set, based on whether the validation metrics meet acceptable thresholds or not. In the application of the developed validation methodology, the average link loads for the morning rush have been validated. To adjust the developed validation methodology to system-specific factors and to set acceptable metric thresholds, discussions with model practitioners have taken place. The validation has been performed on both lines and links, and for bus entire line number series have been validated as well. The validation results show that commuter train meets the set threshold values in a higher proportion than bus and local tram do. However, Trafikförvaltningen is recommended to further calibrate the route assignment model in order to achieve a better model performance. The developed validation methodology can be used for validation of public transport models, and can in combination with model calibration be used in an iterative process to fine-tune model parameters for optimising validation results. Finally, a number of recommendations are proposed for Trafikförvaltningen to increase the efficiency and quality of the validation process, such as synchronising model data with the observed data. / Under 2018 spenderade Trafikförvaltningen ungefär 2,2 miljarder kronor på nya infrastrukturinvesteringar för kollektivtrafiksystemet i Stockholm, varav många av dessa baserades på deras kollektivtrafikmodeller. Den tidigare metoden för att valideras dessa modeller har saknat gedigen vetenskaplig grund, effektivitet och ett systematiskt tillvägagångssätt, vilket lett till osäkerhet gällande investeringsbeslut. Dessutom har få vetenskapliga studier genomförts för att ta fram valideringsmetodologier för storskaliga modeller, såsom kollektivtrafikmodeller. Av dessa skäl har en vetenskaplig valideringsmetodologi för kollektivtrafikmodeller tagits fram i detta examensarbete. Denna valideringsmetodologi har tillämpats på Trafikförvaltningens 2014 års nätutläggningsmodell, för trafikslagen buss, pendeltåg och spårväg. I den framtagna valideringsmetodologin har de valda valideringsmåtten vid namn MAPE, %RMSE och R^2 använts för att jämföra länkbelastningar från en nätutläggningsmodell med observerade länkbelastningar från ett Automatisk Trafikanträkning-system (ATR). För att ge en översikt över modellens precision har åtta scenarios satts baserat på om valideringsmåtten godkänns eller inte enligt tröskelvärden. I tillämpningen av den framtagna valideringsmetodologin har de genomsnittliga länkbelastningarna för morgonens rusningstrafik validerats. För att justera den framtagna valideringsmetodologin efter systemspecifika faktorer och för att sätta godkända tröskelvärden för valideringsmåtten, har diskussioner med trafikanalytiker hållits. Valideringen har utförts både på linjer och länkar, och för buss har även hela linjeserier validerats. Valideringsresultaten för pendeltåg har en högre andel godkända mätningar än buss och spårväg. Trafikförvaltningen rekommenderas dock att kalibrera nätutläggningsmodellen ytterligare för att uppnå ett bättre resultat. Den framtagna valideringsmetodologin kan användas för valideringar av kollektivtrafikmodeller, och kan i kombination med modellkalibrering användas i en iterativ process för att finjustera modellparametrar och därmed optimera valideringsresultaten. Slutligen föreslås ett antal rekommendationer för Trafikförvaltningen för att öka effektiviteten och kvaliteten på valideringsprocessen, till exempel att synkronisera modelldata med observerad data.
8

From Field to Home: Assessing Air Infiltration and Soil Track-in Transport Pathways of Agricultural Pesticides into Farmworkers' Home and Identifying Risk Factors for Increased In-Home Pesticide Levels

Sugeng, Anastasia Julia January 2016 (has links)
Farmworkers and their families may experience increased levels of agricultural pesticides in their homes due to both (1) take-home/soil track-in on shoes, clothes and skin, and (2) air infiltration from nearby agriculture fields via agricultural pesticide drift in the vapor phase or adhered to resuspended soil particles. This dissertation estimates the relative contributions o the take-home/soil track-in and air infiltration pathways of agricultural pesticides into homes, as well as identifies the risk factors for increased in-home agricultural pesticide levels for farmworkers and their families living near agriculture fields. Samples of outdoor air, yard soil, and house dust from 21 farmworkers' homes in Yuma County, Arizona were collected and analyzed for a suite of agricultural pesticides. To capture household information, such as behaviors, demographics, and housing structure, a participant questionnaire was administered at the time of the sampling. A pesticide transport model was developed, evaluated, and applied to quantify relative contributions of the air infiltration and the take-home/soil track-in pathways of agricultural pesticides into the house dust of the farmworkers' homes. To explore a wide-range of potential risk factors for increased agricultural pesticide levels in the homes, traditional statistical methods and Classification and Regression Tree (CART) analyses were used. The results of this study, found that the air infiltration pathway contributes to over 90% of some agricultural pesticides in the house dust found in the farmworkers' homes. In addition, among the influential risk factors for increased in-home agricultural pesticide levels was the home being a closer distance to an agricultural field, as well as the home having carpeted floors, more farmworkers per square footage of the home, and less months of heating and cooling the home. It is suggested that future intervention efforts to reduce in-home agricultural pesticide levels put more emphasis on targeting the air infiltration pathway, and take into consideration relevant risk factors for increased pesticide levels in the home.
9

Discriminating between Biological and Hydrological Controls of Hyporheic Denitrification across a Land Use Gradient in Nine Western Wyoming Streams

Myers, Andrew Kenneth 01 May 2008 (has links)
I studied nine streams near Grand Teton National Park, Wyoming, covering a land use gradient (urban, agricultural, and forested) to assess influences of land use on denitrification rates and hyporheic exchange. I hypothesized denitrification in the hyporheic zone is governed by availability of chemical substrates and hydrologic transport. I tested this hypothesis by coupling measurements of denitrification potentials in hyporheic sediments with a 2-storage zone solute transport model. Denitrification potentials were lowest on average in hyporheic sediments from forested streams and highest from agricultural streams. Modeling results suggest, on average, agricultural sites are transport-limited by having the slowest exchange rate with hyporheic zone and longest transport before entering storage. Land use influences the capacity for hyporheic denitrification in two ways 1) agricultural and urban practices supply substrates that build the microbial potential for denitrification and 2) agricultural and urban activities alter channel form and substrates, limiting hyporheic exchange.
10

Förslag till modell av kemikaliespridning i mark anpassad för användning vid räddningsinsats - Kemspill Mark 4.0

Alsterhag, Elin January 2005 (has links)
<p>After emergencies involving chemical spills it is of great importance that correct measures are taken with short notice, both for the security of people and in order to minimize future environmental consequences. The RIB-unit at the Swedish Rescue Services Agency initiated this study, the aim of which is to propose changes to the existing chemical transport calculation tool: Chemical Spill 3.4, included in RIB - Integrated Decision Support for Civil Protection, so that it can be used for decision support as well as in preventive work. A rough estimation of chemical transport in the subsurface is considered being of great importance when making decisions during emergency response operations.</p><p>The proposition presented in this report is a non site specific chemical transport model which is designed to give a rough estimation of NAPL flow in homogenous isotropic soil shortly after an instantaneous release. The model can be used at two levels; both in situations without access to information on subsurface properties, and with more accuracy in situations with knowledge of the included parameters. For that reason the user can choose among predefined alternatives or assign the parameters a numeric value to increase the quality of the model output. The predefined alternatives are represented by default values for different parameters in the model.</p><p>Suggested model output are vertical and horizontal transport of NAPL phase, horizontal transport of dissolved chemical in the aqueous phase, as well as the amounts of spill that are evaporated and entrapped in the soil, all at the time specified by the user. Moreover the maximum transport of the chemical phase and time to groundwater pollution are given. To make the uncertainty of the model clear for the user the results are given as the most likely value together with the smallest and largest values that can be expected.</p><p>Equations presented in this report describe a selection of subsurface processes which occur after a release of chemicals. The selection is made with the aim to reach satisfying result when the model is used within its domain without making the model complicated for the user. Therefore simplifying assumptions have been made in the descriptions of some processes while some other processes are neglected. Simplifications have been based on recognized references or on theoretical arguments, but the overall performance of the model as well as some of the default input parameters need to be further tested and validated before the new version of the model can be included in RIB. However, compared with the existing version Chemical Spill 3.4 several changes have been suggested; including additional processes, development of default values and making model uncertainty clear to the user. These changes are thought to significantly improve the existing model.</p> / <p>Vid olyckor med kemikalieutsläpp är det av stor vikt att rätt åtgärder snabbt vidtas, både för människors säkerhet och för att minimera framtida miljökonsekvenser. Räddningsverkets RIB-enhet initierade den här studien vars mål är att ge förslag på modellteknisk förbättring av det befintliga beräkningsprogrammet Kemspill Mark 3.4, som ingår i programpaketet RIB - Integrerat beslutsstöd för skydd mot olyckor, så att det i framtiden kan användas som beslutsstöd vid räddningsinsats efter kemikalieutsläpp samt vid förebyggande planeringsarbete. En grov vägledning om kemikaliens spridning anses vara av stor betydelse för att räddningstjänsten ska kunna fatta rätt beslut vid en insats.</p><p>Förslaget som presenteras i denna rapport är en icke platsspecifik spridningsmodell anpassad för vätskor med begränsad löslighet i vatten och ger en grov uppskattning av spridning i homogen och isotrop mark inom några timmar efter ett momentant utsläpp.</p><p>Modellen ska kunna användas på två nivåer; för att ge en mycket grov uppskattning av spridningen även utan tillgång på uppgifter om markegenskaper, samt med större noggrannhet då informationen finns. Med anledning av detta kommer användaren ges möjlighet att välja bland fördefinierade alternativ eller att ange indata numeriskt för att öka noggrannheten. De fördefinierade valen representeras av typvärden för olika parametrar i modellen.</p><p>Den nya modellen i förslaget ger vid angiven tid vertikal och horisontell spridning av fri kemikaliefas, horisontell spridning av löst förorening i vattenfas samt hur stor andel av utsläppet som hålls kvar i marken respektive har avdunstat från spillytan. Dessutom anges kemikaliefasens maximala spridning och hur lång tid det tar för utsläppet att nå grundvattnet. För att tydliggöra modellens osäkerhet för användaren ges utdata som det mest sannolika värdet tillsammans med det största och minsta värdet som är sannolikt.</p><p>Ekvationerna som presenteras i rapporten beskriver ett urval av de processer som sker i marken vid ett kemikalieutsläpp. Urvalet har gjorts med utgångspunkt att uppnå tillfredställande resultat inom modellens domän utan att komplicera för användaren och därmed har förenklande antaganden gjorts för att beskriva vissa förlopp medan andra försummats helt. Förenklingarna har grundats på vedertagna referenser eller på teoretiskt resonemang. Validering av modellresultat samt vissa typvärdens intervall krävs före inkludering i RIB. Jämfört med det befintliga Kemspill Mark 3.4 har dock stora förändringar föreslagits; fler processer inkluderas, typvärden utvecklas och modellens osäkerhet görs tydlig för användaren. Förändringar tros medföra en signifikant förbättring av modellen.</p>

Page generated in 0.066 seconds