• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 5
  • 4
  • 3
  • Tagged with
  • 56
  • 56
  • 14
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Flow and transport modeling in large river networks

Tavakoly Zadeh, Ahmad A. 17 September 2014 (has links)
The work presented in this dissertation discusses large scale flow and transport in river networks and investigates advantages and disadvantages of grid-based and vector-based river networks. This research uses the Mississippi River basin as a continental-case study and the Guadalupe and San Antonio rivers and Seine basin in France as regional-case studies. The first component of this research presents an extension of regional river flow modeling to the continental scale by using high resolution river data from NHDPlus dataset. This research discovers obstacles of flow computations for river a network with hundreds of thousands river segments in continental scales. An upscaling process is developed based on the vector-based river network to decrease the computational effort, and to reduce input file size. This research identifies drainage area as a key factor in the flow simulation, especially in a wet climate. The second component of this research presents an enhanced GIS framework for a steady-state riverine nitrogen transport modeling in the San Antonio and Guadalupe river network. Results show that the GIS framework can be applied to represent a spatial distribution of flow and total nitrogen in a large river network with thousands of connected river segment. However, time features of the GIS environment limit its applicability to large scale time-varied modeling. The third component shows a modeling regional flow and transport with consideration of stream-aquifer interactions at a regional scale at high resolution. The STICS- Eau-Dyssée combined system is implemented for entire seine basin to compute daily nitrate flux in the Seine grid river network. Results show that river-aquifer exchange has a significant impact on river flow and transport modeling in larger river networks. / text
42

Single-well tracer push-pull method development for subsurface process characterization / Early-time tracer injection-flowback test for stimulated fracture characterization, numerical simulation uses and efficiency for flow and solute transport

Karmakar, Shyamal 15 June 2016 (has links)
No description available.
43

Modélisation par transport réactif des résines échangeuses d'ions utilisées dans les réacteurs à eau sous pression / Reactive transport modeling of ion exchange resins used in pressurized water reactors

Bachet, Martin 13 February 2017 (has links)
L’eau des circuits d’une centrale nucléaire est purifiée à l’aide de résines échangeuses d’ions. La prédiction de leurs performances constitue une aide importante pour l’exploitation de ces réacteurs. Les méthodes du transport réactif sont particulièrement adaptées pour cela et constituent la base du code OPTIPUR, dédié à la modélisation de ces résines. Le travail présenté comporte trois axes principaux. Le premier est l’intégration d’une limitation au transfert de masse dans une colonne de résines échangeuses d’ions, avec une mobilité spécifique à chaque espèce chimique, dans le cadre d’un découplage des calculs de chimie et de transport. Ce modèle permet, sans paramètre ajustable, de reproduire assez fidèlement une série d’expériences réalisées précédemment par le CEA. Le second axe concerne les aspects numériques du transport réactif, avec l’utilisation de la méthode d’Anderson pour accélérer la convergence du couplage chimie-transport dans un schéma itératif. En utilisant les informations issues des itérations précédentes et sans modification majeure du code, la robustesse et les temps de calcul ont pu être nettement améliorés. La troisième thématique abordée est celle de l’équilibre d’échange d’ions. Les bases d’un modèle prenant en considération l’évolution de l’humidité de la résine, ainsi que son élasticité sont proposées ; les interactions entre groupes fonctionnels, contre-ions et eau sont considérées comme des équilibres chimiques. Les constantes d’équilibre sont ajustées à partir de mesures de la teneur en eau de la résine à différentes pressions de vapeur d’eau. Finalement, des coefficients de sélectivité apparents peuvent être calculés et comparés aux mesures disponibles. / In nuclear power plants, the water contained in different circuits is purified by passing through ion exchange resins. Prediction of the performance of these resins is an important help to the plant operators. To this end, the method of reactive transport modeling are well suited and is the basis of the OPTIPUR code that was designed to model the resins. The work presented in this manuscript covers three main aspects. The first one is the integration of a limitation to mass transfer in a ion exchange deep bed, taking into account a specific mobility for each chemical species, in the context of separated calculations for chemistry and transport. This model was shown to reproduce experimental data, without adjustable parameters. The second part of this work deals with the numerical aspects of reactive transport modelling. A method developped by Anderson was used to accelerate the convergence of the chemistry transport coupling in an iterative scheme. Using the information from previous iterations, and without major changes in the code, calculation times were largely decreased, as well as the number of calculations failures. The third topic is ion exchange equilibrium. The basis of a model that takes into account the change in the water content of the resin and its elasticity are described. The interactions between the fonctional groups, the counterions and water are considered as chemical reactions. The corresponding equilibrium constants are fitted to measurements of the water content of the resin at different relative humidity. Finaly, the selectivity coefficients can be calculated and compared to litterature values.
44

Modelling congestion in passenger transit networks / Modélisation des contraintes de capacité en transports collectifs de voyageurs

Chandakas, Ektoras 01 April 2014 (has links)
Un modèle structurel est fourni afin d'appréhender les phénomènes de capacité dans un modèle d'affectation de flux de voyageurs sur un réseau de transport collectifs. Cela a été fondé sur une représentation du réseau de transports collectifs en deux couches : sur la couche inférieure, le modèle traite séparément chaque sous système du réseau (ligne, station et rabattement) en fonction des effets de capacité spécifiques ; sur la couche supérieure, le choix d'itinéraire d'un voyageur individuel est adressée par une représentation du réseau en leg (ou segment de ligne) en utilisant le coût et les caractéristiques opérationnelles des sous-systèmes respectifs. On établit une cadre novateur pour modéliser les effets de capacité et on développe le modèle CapTA (pour Capacitated Transit Assignment). Il s'agit d'un modèle d'affectation de flux systémique et modulaire. Il adresse les phénomènes de capacité ci dessous : La qualité du service en véhicule est liée au confort de voyageurs à bord. L'occupation d'états de confort hétérogènes (places assises, strapontins et debout à de densités de voyageurs variables) influence la pénibilité perçu du voyage ; La capacité du véhicule à la montée impacte le temps d'attente de voyageurs et leur distribution aux missions disponibles ; La capacité de l'infrastructure de la ligne établit une relation entre le temps de stationnement des véhicules (and par extension les flux de voyageurs en montée et en descente) et la performance des missions et leur fréquence de service. Ces phénomènes sont traités par ligne d'exploitation sur la base d'un ensemble des modèles locaux qui rendent de flux et de coût spécifiques. Par conséquent, ils modifient les conditions locales d'un trajet en transports collectifs pour chaque voyageur individuel. Cependant, ils doivent être adressés dans le cadre d'un réseau de transports collectifs afin de recueillir leur effet sur les choix d'itinéraire sur le réseau ; essentiellement sur les arbitrages économiques qui impactent le choix entre itinéraires alternatifs. Leur traitement sur la couche réseau garantir la cohérence du choix d'itinéraire. Le modèle de station traite de contraintes de capacité spécifiques et évalue les conditions locales de marche, qui est sensible aux interactions des voyageurs à l'intérieur de la station : le goulot instantané à l'entrée d'un élément de circulation retard l'évacuation de la plateforme ; la densité de voyageurs et l'hétérogénéité des leur flux ralenti les voyageurs qui circulent dans une station ; la présence de l'information en temps réel influence le processus de décision des voyageurs. Ces effets n'ont pas seulement un impact sur le choix d'itinéraire à l'intérieure de la station, mais notamment ils modifient les choix de service sur le niveau du réseau. La Région Ile-de-France fournit un champ d'application idéal pour un modèle d'affectation de flux de voyageurs en transport collectifs sous contraintes de congestion. Plus précisément, il est utilisé dans le cadre du modèle CapTA pour illustrer les capacités de simulation et la finesse de l'approche de modélisation adoptée. Le réseau de transports collectifs contient 1 500 missions de cars et autocars, tout comme 260 missions ferroviaires et inclut 14 lignes de métro et 4 lignes de tramway. L'affectation de trafic à l'heure de pointe du matin est caractérisée d'une charge importante en voyageurs sur les sections centrales de lignes ferroviaires qui traversent la ville. Un temps de stationnement élevé, en raison de flux de montée et descente, et la réduction de la fréquence de service impactent la capacité des missions et des lignes. Le temps généralisé d'un trajet est impacté notamment de sa composante de confort à bord. De résultats détaillés sont présentés sur le RER A, la ligne la plus chargée du réseau ferroviaire régional / A structural model is provided to capture capacity phenomena in passenger traffic assignment to a transit network. That has been founded on a bi-layer representation of the transit network : on the lower layer the model addresses each network sub-system (line, station and access-egress) separately, on the basis of specific capacity effects ; on the upper layer a leg-based representation is used with respect to the sub-systems' costs and operating characteristics to address the trip maker's path choices. We establish a novel framework for modelling capacity effects and develop the CapTA network model (for Capacitated Transit Assignment). It is systemic and modular and addresses in particular the following capacity phenomena, the in-vehicle quality of service is linked to the comfort of the passengers on-board. The occupation of heterogeneous comfort states (seats, folding seats and standing at different passenger densities) influences the perceived arduousness of the travel ; the vehicle capacity at boarding influences the waiting time of the passengers and their distribution to the transit services ; the track infrastructure capacity relates the dwelling time of the vehicles (and by extent the alighting and boarding flows) with the performance of the transit services and their service frequency. These phenomena are dealt with by line of operations on the basis of a set of local models yielding specific flows and costs. Accordingly, they modify the local conditions of a transit trip for each individual passenger. However, these should be addressed within the transit network in order to capture their effect on the network path choices; essentially the economic trade-offs that influence the choice between different network itineraries. Their treatment in a network level assures the coherence of the path choice. Equivalently, a station sub-model addresses specific capacity constraints and yields the local walking conditions, sensible to the interaction of the passengers in the interior of a station : the instant bottleneck created at the entry of the circulation elements delays the evacuation of the station platforms; the passenger density and presence of heterogeneous passenger flows slows down the passengers who circulate in the station; and the presence of real-time information influences the decision making process of the transit users exposed to. These effects do not only impact locally the in-station path choice, but most notably they modify the choices of transit routes and itineraries on a network level. The Paris Metropolitan Region provides an ideal application field of the capacity constrained transit assignment model. It is mainly used as a showcase of the simulation capabilities and of the finesse of the modelling approach. The transit network involves 1 500 bus routes together with 260 trains routes that include 14 metro lines and 4 light rail lines. Traffic assignment at the morning peak hour is characterized by heavy passenger loads along the central parts of the railway lines. Increased train dwelling, due to boarding and alighting flows, and reduction in the service frequency impact the route and the line capacity. The generalized time of a transit trip is impacted mainly though its in-vehicle comfort component. Detailed results have been provided for the RER A, the busiest commuter rail line in the transit network
45

HIGH RESOLUTION SENSING OF NITRATE DYNAMICS IN A MIXED-USE APPALACHIAN WATERSHED: QUANTIFYING NITRATE FATE AND TRANSPORT AS INFLUENCED BY A BACKWATER RIPARIAN WETLAND

Jensen, Alexandria Kosoma 01 January 2018 (has links)
As harmful algal blooms begin to appear in unexpected places such as rivers in predominantly forested systems, a better understanding of the nutrient processes within these contributing watersheds is necessary. However, these systems remain understudied. Utilization of high-resolution water quality data applied to deterministic numerical modeling has shown that a 0.42% watershed area backwater riparian wetland along the Ohio River floodplain can attenuate 18.1% of nitrate discharged from local mixed-use watersheds and improves in performance during high loading times due to coinciding increased hydrological connectivity and residence times of water in these wetlands. Loading from the Fourpole Creek watershed was typical for mixed-use systems at 3.3 kgN/ha/yr. The high-resolution data were used to improve boundary condition parameterization, elucidate shortcomings in the model structure, and reduce posterior solution uncertainty. Using high resolution data to explicitly inform the modeling process is infrequently applied in the literature. Use of these data significantly improves the modeling process, parameterization, and reduces uncertainty in a way that would not have been possible with a traditional grab sampling approach.
46

The Geochemical Evolution of Oil Sands Tailings Pond Seepage, Resulting from Diffusive Ingress Through Underlying Glacial Till Sediments

Holden, Alexander A Unknown Date
No description available.
47

Compréhension des mécanismes de biodétérioration des matériaux cimentaires dans les réseaux d'assainissement : étude expérimentale et modélisation / Understanding of cementitious materials biodeterioration in sewer networks : experimental study and modelling

Grandclerc, Anais 16 October 2017 (has links)
Des détériorations importantes sont observées dans les réseaux d’assainissement en béton en raison de la présence d’hydrogène sulfuré (H2S). Différentes études ont montré qu’un environnement riche en hydrogène sulfuré entraîne, au contact de surfaces cimentaires, la sélection de bactéries sulfo-oxydantes (bactéries capables d’oxyder des composés soufrés réduits), menant à la production d’acide sulfurique. Cet acide détériore localement les réseaux par dissolution et recomposition minéralogique de la matrice cimentaire (formation de gypse et d’ettringite). Les réseaux ne collectent alors plus correctement les eaux usées et ce phénomène provoque donc des travaux de rénovation onéreux. Dans ce contexte, des solutions plus performantes que celles mises en place actuellement doivent être étudiées. L’objectif du projet FUI DURANET dans lequel s’inscrit cette thèse vise à proposer un essai accéléré et à développer un modèle.La mise en place d’essais abiotiques a permis de démontrer que cette première étape n’est pas l’étape limitante du phénomène de biodétérioration. En effet, le pH de surface des matériaux cimentaires adapté au développement microbien est rapidement atteint lorsqu’ils sont mis au contact de l’hydrogène sulfuré à une concentration élevée (100 ppm), quel que soit le matériau cimentaire considéré (mortiers à base de ciments CEM I, CEM III, CEM IV, CEM V, CAC et CSS). La modélisation de l’attaque par l’acide sulfurique et la mise en place d’un essai représentatif et accéléré ont ensuite été abordées pour prédire la durabilité des différents matériaux cimentaires de l’étude. Pour l’essai, différentes techniques d’ensemencement des microorganismes à la surface des matériaux cimentaires ont été comparées, afin de déterminer laquelle mène à la meilleure reproduction des conditions d’un réseau d’assainissement et à l’accélération des mécanismes de biodétérioration la plus importante. Ces essais permettent de préconiser l’utilisation de boues activées contenant un consortium de microorganismes, par rapport à l’utilisation de souches de collection, dont l’activité dépend trop fortement de leur adaptabilité aux conditions environnementales. L’ensemble des résultats, obtenus expérimentalement et par modélisation, montre une meilleure résistance des ciments d’aluminate de calcium et une dégradation très importante des ciments Portland face aux mécanismes mis en jeu, en accord avec les essais in-situ / Important deteriorations have been observed in concrete sewers, due to hydrogen sulfide (H2S) presence. H2S is used as nutrients for sulfur-oxidizing bacteria (bacteria able to oxidize the reduced sulfur compounds) and is oxidized into sulfuric acid. This acid attack of concrete leads to cementitious matrix dissolution and expansive products formation (gypsum and ettringite). This phenomenon disturbs the sewer system and conducts to expensive works of rehabilitation. In order to avoid this degradation, a French project named “FUI Duranet” was initiated to propose more efficient solutions. The aim of this thesis is to define a representative and accelerated test as well as a predictive model.Abiotic tests allow stating that this first stage of the biodeterioration mechanisms is not the limiting stage. Indeed, the adapted surface pH of the cementitious materials to bacteria development is quickly reached with a high H2S concentration (100 ppm), whatever the cementitious materials considered (mortars based on CEM I, CEM III, CEM IV, CEM V, CAC, and SSC cements). The chemical-transport modeling of the sulfuric acid attack of cementitious materials and the establishment of a representative and accelerated test have been proposed to predict their service life in these conditions. For the test, different seeding technics have been compared in order to determine which one lead to the better reproduction and acceleration of biodeterioration mechanisms. This test allows recommending the sludge use, which contains a microorganism’s consortium, rather than a collection strain use, whose activity is too dependent on environmental conditions. With the experimental test and the model, the better resistance of the calcium aluminate cement and the important degradation of the Portland cements are quickly confirmed, as highlighted during the field tests
48

Reactive transport simulation of contaminant fate and redox transformation in heterogeneous aquifer systems

Jang, Eunseon 28 August 2017 (has links) (PDF)
The transport of contaminants in groundwater system is strongly influenced by various aquifer heterogeneity factors such as spatial aquifer heterogeneity of hydraulic conductivity and reactive substances distribution. The contaminants transport can be simulated by using numerical reactive transport models, and their fate can be possibly even predicted. Furthermore, reactive transport modeling is an essential tool to get a profound understanding of hydrological-geochemical complex processes and to make plausible predictions of assessment. The goal of this work is to improve our understanding of the groundwater contaminants fate and transport processes in heterogeneous aquifer systems, with a focus on nitrate problems. A large body of knowledge of the fate and transport of nitrogen species has been achieved by previous works, however, most previous models typically neglect the interrelation of physical and chemical aquifer heterogeneities on the contaminant fate and redox transformation, which is required for predicting the movement and behavior of nitrate and quantifying the impact of uncertainty of numerical groundwater simulation, and which motivates this study. The main research questions which are answered in this work are how aquifer heterogeneity influences on the nitrate fate and transport and then, what is the most influential aquifer heterogeneity factor must be considered. Among the various type of aquifer heterogeneity, physical and chemical aquifer heterogeneities are considered. The first part of the work describes groundwater flow system and hydrochemical characteristics of the study area (Hessian Ried, Germany). Especially, data analyses are performed with the hydrochemical data to identify the major driving force for nitrate reduction in the study area. The second part of the work introduces a kinetic model describing nitrate removal by using numerical simulation. The resulting model reproduces nitrate reduction processes and captures the sequence of redox reactions. The third and fourth parts show the influence of physical and chemical aquifer heterogeneity with varying variance, correlation length scale, and anisotropy ratio. Heterogeneous aquifer systems are realized by using stochastic approach. Results, in short, show that the most influential aquifer heterogeneity factors could change over time. With abundant requisite electron donors, physical aquifer heterogeneity significantly influences the nitrate reduction while chemical aquifer heterogeneity plays a minor role. Increasing the spatial variability of the hydraulic conductivity increases the nitrate removal efficiency of the system in addition. If these conditions are reversed, nitrate removal efficiency varies by the spatial heterogeneity of the available initial electron donor. The results indicate that an appropriate characterization of the physical and chemical properties can be of significant importance to predict redox contamination transport and design long-term remediation strategies and risk assessment.
49

Reactive transport simulation of contaminant fate and redox transformation in heterogeneous aquifer systems

Jang, Eunseon 17 March 2017 (has links)
The transport of contaminants in groundwater system is strongly influenced by various aquifer heterogeneity factors such as spatial aquifer heterogeneity of hydraulic conductivity and reactive substances distribution. The contaminants transport can be simulated by using numerical reactive transport models, and their fate can be possibly even predicted. Furthermore, reactive transport modeling is an essential tool to get a profound understanding of hydrological-geochemical complex processes and to make plausible predictions of assessment. The goal of this work is to improve our understanding of the groundwater contaminants fate and transport processes in heterogeneous aquifer systems, with a focus on nitrate problems. A large body of knowledge of the fate and transport of nitrogen species has been achieved by previous works, however, most previous models typically neglect the interrelation of physical and chemical aquifer heterogeneities on the contaminant fate and redox transformation, which is required for predicting the movement and behavior of nitrate and quantifying the impact of uncertainty of numerical groundwater simulation, and which motivates this study. The main research questions which are answered in this work are how aquifer heterogeneity influences on the nitrate fate and transport and then, what is the most influential aquifer heterogeneity factor must be considered. Among the various type of aquifer heterogeneity, physical and chemical aquifer heterogeneities are considered. The first part of the work describes groundwater flow system and hydrochemical characteristics of the study area (Hessian Ried, Germany). Especially, data analyses are performed with the hydrochemical data to identify the major driving force for nitrate reduction in the study area. The second part of the work introduces a kinetic model describing nitrate removal by using numerical simulation. The resulting model reproduces nitrate reduction processes and captures the sequence of redox reactions. The third and fourth parts show the influence of physical and chemical aquifer heterogeneity with varying variance, correlation length scale, and anisotropy ratio. Heterogeneous aquifer systems are realized by using stochastic approach. Results, in short, show that the most influential aquifer heterogeneity factors could change over time. With abundant requisite electron donors, physical aquifer heterogeneity significantly influences the nitrate reduction while chemical aquifer heterogeneity plays a minor role. Increasing the spatial variability of the hydraulic conductivity increases the nitrate removal efficiency of the system in addition. If these conditions are reversed, nitrate removal efficiency varies by the spatial heterogeneity of the available initial electron donor. The results indicate that an appropriate characterization of the physical and chemical properties can be of significant importance to predict redox contamination transport and design long-term remediation strategies and risk assessment.
50

VS2DRT: Variably saturated two dimensional reactive transport modeling in the vadose zone

Haile, Sosina Shimeles 22 February 2013 (has links)
Contaminate transport in vadose is a huge concern since the vadose zone is the main passage way for ground water recharge. Understanding this process is crucial in order to prevent contamination, protect and rehabilitate ground water resources. Reactive transport models are instrumental for such purposes and there are numerous solute transport simulation programs for both ground water and vadose zone but most of this models are limited to simple Linear, Langmuir and Freundlich sorption models and first order decay and fail to simulate more complex geochemical reactions that are common in the vadose zone such as cation exchange, surface complexation, redox reaction and biodegradation. So it is necessary to enhance capabilities of solute transport models by incorporating well tested hydrogeochemical models like PHREEQC in to them to be able closely approximate the geochemical transport process in the subsurface. In this PhD research a new reactive transport model called VS2DRT was created by coupling existing public domain solute and heat transport models VS2DT, VS2DH with hydro-chemical model PHREEQC using non-iterative operator splitting technique. VS2DRT was compiled using MinGW compiler using tools like autotools and automake. A graphical user interface was also created using QT creator and Argus ONE numerical development tools. The new model was tested for one dimensional conservative Cl transport, surface complexation, cation exchange, dissolution of calcite and gypsum, heat and solute transport as well as for two dimensional cation exchange cases. Their results were compared with VS2DT, VS2DH, HP1 and HP2 models and the results are in good agreement.

Page generated in 0.2555 seconds