• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Power MOSFET for High-Frequency Synchronous Buck Converter

Bai, Yuming 12 September 2003 (has links)
Evolutions in microprocessor technology require the use of a high-frequency synchronous buck converter (SBC) in order to achieve low cost, low profile, fast transient response and high power density. However, high frequency also causes more power loss on MOSFETs. Optimization of the MOSFETs plays an important role in the system performance. Circuit and device modeling is important in understanding the relationship between the device parameters and the power loss. The gate-to-drain charge (Qgd) is studied by a novel nonlinear model and compared with the simulation results. A new switching model is developed, which takes into account the effect of parasitic inductance on the switching process. Another model for dv/dt-induced false triggering-on relates the false-trigger-on voltage with the parasitic elements of the device and the circuits. Some techniques are proposed to reduce the simulation time of FEA in the circuit simulation. Based on this approach, extensive simulations are performed to study the switching performance of the MOSFET with the effect of the parasitic elements. Directed by the analytical models and the experience acquired in the circuit simulation, the MOSFET optimization is realized using FEA. Different optimization algorithms are compared. The experimental results show that the optimized MOSFETs surpass the mainstream commercialized products in both cost and performance. / Ph. D.
2

Modeling And Analysis Of Power Mosfets For High Frequency Dc-dc Converters

Xiong, Yali 01 January 2008 (has links)
Evolutions in integrated circuit technology require the use of a high-frequency synchronous buck converter in order to achieve low cost, low profile, fast transient response and high power density. However, high frequency operation leads to increased power MOSFET switching losses. Optimization of the MOSFETs plays an important role in improving converter performance. This dissertation focuses on revealing the power loss mechanism of power MOSFETs and the relationship between power MOSFET structure and its power loss. The analytical device model, combined with circuit modeling, cannot reveal the relationship between device structure and its power loss due to the highly non-linear characteristics of power MOSFETs. A physically-based mixed device/circuit modeling approach is used to investigate the power losses of the MOSFETs under different operating conditions. The physically based device model, combined with SPICE-like circuit simulation, provides an expeditious and inexpensive way of evaluating and optimizing circuit and device concepts. Unlike analytical or other SPICE models of power MOSFETs, the numerical device model, relying little on approximations or simplifications, faithfully represents the behavior of realistic power MOSFETs. The impact of power MOSFET parameters on efficiency of synchronous buck converters, such as gate charge, on resistance, reverse recovery, is studied in detail in this thesis. The results provide a good indication on how to optimize power MOSFETs used in VRMs. The synchronous rectifier plays an important role in determining the performance of the synchronous buck converter. The reverse recovery of its body diode and the Cdv/dt induced false trigger-on are two major mechanisms that impact SyncFET's performance. This thesis gives a detailed analysis of the SyncFET operation mechanism and provides several techniques to reduce its body-diode influence and suppress its false Cdv/dt trigger-n. This thesis also investigates the influence of several circuit level parameters on the efficiency of the synchronous buck converter, such as input voltage, circuit parasitic inductance, and gate resistance to provide further optimization of synchronous buck converter design.
3

Third Quadrant Operation of 1.2-10 kV SiC Power MOSFETs

Zhang, Ruizhe 22 April 2022 (has links)
The third quadrant (3rd-quad) conduction (or reverse conduction) of power transistors is critical for synchronous power converters. For power metal-oxide-semiconductor field-effect-transistors (MOSFETs), there are two current paths in the 3rd-quad conduction, namely the MOS channel path and the body diode path. It is well known that, for 1.2 kV silicon carbide (SiC) planar MOSFETs, the conduction loss in the 3rd-quad is reduced by turning on the MOS channel with a positive gate bias (VGS) and keeping the dead time as small as possible. Under this scenario, the current is conducted through both paths, allowing the device to take advantage of the zero 3rd-quad forward voltage drop (VF3rd) of the MOS channel path and the small differential resistance of the body diode path. However, in this thesis work, this popular belief is found to be invalid for power MOSFETs with higher voltage ratings (e.g., 3.3 kV and 10 kV), particularly at high temperatures and current levels. The aforementioned MOS channel and body diode paths compete in the device’s 3rd-quad conduction, and their competition is affected by VGS and device structure. This thesis work presents a comparative study on the 3rd-quad behavior of 1.2 kV to 10 kV SiC planar MOSFET through a combination of device characterization, TCAD simulation and analytical modeling. It is revealed that, once the MOS channel turns on, it changes the potential distribution within the device, which further makes the body diode turn on at a source-to-drain voltage (VSD) much higher than the built-in potential of the pn junction. In 10 kV SiC MOSFETs, with the MOS channel on, the body diode does not turn on over the entire practical VSD range. As a result, the positive VGS leads to a completely unipolar conduction via the MOS channel, which could induce a higher VF3rd than the bipolar body diode at high temperatures. Circuit test is performed, which validates that a negative VGS control provides the smallest 3rd-quad voltage drop and conduction loss at high temperatures in 10 kV SiC planar MOSFET. The study is also extended to the trench MOSFET, another major structure of commercial SiC MOSFETs. Based on the revealed physics for planar MOSFETs, the optimal VGS control for the 3rd-quad conduction in different types of commercial trench MOSFETs is discussed, which provides insights for the design of high-voltage trench MOSFETs. These results provide key guidelines for the circuit applications of medium-voltage SiC power MOSFETs. / M.S. / Recent years, the prosperity of power electronics applications such as electric vehicle and smart grid has led to a rapid increase in the adoption of wide bandgap (WBG) power devices. Silicon Carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) is one of the most attractive candidates in WBG devices, owing to its good tradeoff between breakdown voltage and on resistance, capability of operation at high temperatures, and superior device robustness over other WBG power devices. In most power converters, power device is required to conduct current in its third quadrant (3rd-quad) (i.e., conduct reverse current) either for handling current during the dead time or acting as a commutation switch. In a SiC MOSFET, there are two current paths in the 3rd-quad conduction, namely the MOS channel path and the body diode path. It is widely accepted that by turning on the MOS channel with a positive gate-to-source bias (VGS), both paths are turned on in parallel such that the 3rd-quad conduction loss can be reduced. In this thesis work, it is shown that this long-held opinion does not hold for SiC MOSFETs with high voltage ratings (e.g., 3.3 kV and 10 kV). Through a combination of device characterization, TCAD simulation, and analytical modeling, this thesis work unveils the competing current sharing between the MOS channel and the body diode. Once the MOS channel turns on, it delays the turn-on of the body diode and suppresses the diode current. This effect is more pronounced in MOSFETs with higher voltage ratings. In 10 kV SiC MOSFETs, with the MOS channel on, the body diode does not turn on in the practical operation conditions. At high temperatures, as the bipolar diode path possesses the conductivity modulation, which can significantly lower the voltage drop and is absent in the MOS channel, it would be optimal to turn off the MOS channel. Circuit test is also performed to validate these device findings and evaluate their impact on device applications. Finally, the study is also extended to the commercial SiC trench MOSFET, the other mainstream type of SiC power MOSFETs. These results provide key guidelines for the circuit applications of medium-voltage SiC power MOSFETs.

Page generated in 0.0433 seconds