• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser surface alloying of aluminium alloys

Bransden, Antony Stuart January 1994 (has links)
No description available.
2

A Model to Predict Lubricant Film Starvation in EHL Line Contact

Yin, Mao-chieh 06 September 2011 (has links)
Abstract This study proposes a model to predict the effect of lubricant starvation on EHL behavior of line contact, including the boundaries among the starved, fully flooded, and over-flooded lubrications. A pre-inlet region is analyzed to overcome the discontinuous phenomenon of film thickness at the position of the meniscus presented in the previous model under the starvation. The relationship between the film thickness of the supply region and the position of the meniscus is established. The prediction formulas for the minimum film thickness required to achieve the fully flooded condition is expressed in terms of the load and the speed. This formula can be used to predict the fully flooded/starved boundary under certain of flow rate in the supply end. In the analysis of the pre-inlet region, the surface speed, the pressure and the mass flow rate are assumed to be continuous with the supply region and the pressure region, so that its film thickness can be calculated by the mass flow rate equation. However, when the backflow occurs in the boundary between the pre-inlet and pressure region, only part of the film thickness flows into the pressure region, and the rest film only performs recirculation. When no backflow is observed at this boundary, the film thickness in the pre-inlet region easily rises and continuously connects to the pressure region. If the film thickness in the supply end is increased, the surface speed gradually decreases at the inlet end of the pre-inlet region. When the film thickness in the supply end increases to twice as high as the minimum film thickness that required to achieve the fully flooded condition, the surface speed at the inlet end of the pre-inlet region becomes stationary. Hence, when the film thickness in the supply end continues to increase to more than twice, the backflow occurs at the supply region, and this behavior is called the over-flooded lubrication.
3

Synthesis and characterization of diamond-like carbon and DLC-MoS2 composite thin films

2014 December 1900 (has links)
In order to obtain diamond-like carbon (DLC) thin films with improved mechanical, tribological, thermal and corrosion properties for practical applications, the structure and properties of various DLC thin films including hydrogen-free DLC, hydrogenated DLC, and DLC-MoS2 composites synthesized under different conditions were investigated in this thesis. The research methodologies and the main results are summarized in following paragraphs. Hydrogen-free DLC thin films were synthesized by biased target ion beam deposition (BTIBD) method, while hydrogenated DLC thin films were deposited by ion beam deposition technique using a Kaufman-type ion source and an end-Hall ion source. DLC-MoS2 composite thin films were also synthesized using BTIBD technique in which MoS2 was produced by sputtering a MoS2 target while DLC was simultaneously deposited by ion beam deposition. The influence of processing parameters on the bonding structure, morphology and properties of the deposited films was investigated using atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, synchrotron based near edge X-ray absorption fine structure spectroscopy, X-ray diffraction, scanning electron microscopy, nanoindentation, ball-on-disk and corrosion testing. Finally, the influence of annealing temperature on the structure and properties of pure DLC and DLC-MoS2 composite films in ambient air and low pressure environments was studied. In the case of BTIBD method, hydrogen-free DLC thin films with exceptionally high smoothness and low friction coefficient were prepared by biased target sputtering of graphite target without additional ion bombardment either by negative bias of substrate or assisting ion source. For ion beam deposition technique with Kaufman ion source, the DLC thin films synthesized at ion energies of 300 eV showed the highest sp3 content and optimum properties. Regarding end-Hall ion source, the best properties achieved in DLC films synthesized at ion energies of 100 eV. Comparing with pure DLC and pure MoS2 films, the DLC-MoS2 films deposited at low biasing voltages showed better tribological properties including lower coefficient of friction and wear coefficient in ambient air environment. Also, comparing with pure DLC films, the DLC-MoS2 thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability.
4

Studium vlivu složení synoviální kapaliny na tření kloubní chrupavky / The effect of synovial fluid composition on friction of joint cartilage

Furmann, Denis January 2019 (has links)
This thesis deals with the study of the effect of the constituents of the model synovial fluid on the frictional properties of articular cartilage. The influence of constituents, concentration, speed and load is observed. Experiments were performed on a commercial tribometer at configuration pin-on-plate. Several types of lubricants containing synovial fluid constituents have been selected for the experiments. Lubricants were prepared at two concentrations, the concentration of healthy individuals and at a concentration typical of for osteoarthritic patients. Speeds 5 and 10 mm/s and 5 and 10 N loads were used for all experiments. It is shown that when using only lubricant containing proteins, no difference in the coefficient of friction is observed and the effect of concentration is also not observed. The addition of hyaluronic acid has a synergistic effect with -globulin, however in the case of lubricants containing albumin, the effect is opposite. After the addition of phospholipids, no significant effect on friction is observed in -globulin containing lubricants. No significant effect of the composition and concentration of the lubricants is observed with the load change.
5

Tribological Performance of Polymer Based Self-lubricating Coatings

Roy, Amit January 2019 (has links)
The thesis comprises the two parts in each chapter: the first part focuses on the development and characterization of polyimide (PI) based composite coatings on a steel substrate. In order to improve the tribological performance of polyimide coatings, the fillers i.e. multi-walled carbon nanotubes (MWCNTs) and Graphene (GP) were added into PI and conducted friction test at elevated temperatures ranging from room temperature (RT) to 200°C. Also, the influence of fillers (MWCNTs and GP) materials into PI coatings surface, mechanical and tribological properties of polyimide composites coatings are measured. The addition of MWCNTs and GP reduces the friction coefficient as well as wear volume at elevated temperatures 50°C, 100°C and sometimes at 150°C. These temperatures play a vital role to form a lubrication layer in the contact interfaces at certain load and operating conditions. In these cases, three weight percentage (3wt%) of MWCNTs and GP into polyimide composites showed low friction and high wear-resistant as compared to other PI composites. Besides, by adding these two fillers into pure PI improved the mechanical properties such as micro-hardness and nanoindentation. The scanning electron microscope (SEM) was used to observe the wear mechanism of the composite coatings worn surfaces. The consequences expose that the fatigue wear mechanisms were predominant in the worn surfaces. Moreover, the thermal study of the polyimide composite coatings was conducted using thermal gravimetric (TG) to analyze the behavior of composite coatings at high temperatures. The results showed that the PI coatings with MWCNTs and GP have high thermal stability at 60% sample residue. In the second part-an epoxy coatings with filler materials e.g. hexagonal boron nitride (h-BN) and expanded graphite (EG) were made and conducted their tribological i.e. friction coefficient and wear performance. Also the perfect mixing ratio 4:1 (80 wt% base epoxy matrix and 20 wt% curing agent) was determined on the basis of stoichiometric ratio to cure the epoxy accurately. Therefore, seven samples with a various weight percentage (wt%) were prepared i.e. pure epoxy, epoxy with 5wt%, 10wt%, 15wt% of h-BN and EG. All the prepared samples ran at two different loading 2 N and 4 N conditions with 5 Hz frequency, 300 rpm and 30 minutes duration. The epoxy with h-BN showed low friction as compared to EG where EG has better wear-resistant behavior than h-BN.
6

Research of Coatings of Hydrodynamically Lubricated Sliding Bearings for Combustion Engines / Research of Coatings of Hydrodynamically Lubricated Sliding Bearings for Combustion Engines

Repka, Martin January 2017 (has links)
Hlavní náplní této dizertační práce je výzkum a vývoj nové povrchové vrstvy pro kluzná ložiska na bázi pevných lubrikantů v polyamid-imidové polymerní matrici se zlepšenými tribologckými vlastnostmi. Podklady pro materiálovou kompozici vzešly z expertízy komerčně dostupného povlaku, respektive jeho povrchovou analýzou v mezných operačních podmínkách. Charakterizace mazného oleje před a po tribotestování společně s detailní povrchovou analýzou dala podmínky pro vznik materiálové formulace. Další část práce se zabývá studiem přípravy a vývojem aplikačního nanášení s přípravou polymerní směsi. Nakonec je popsána studie vlivu sulfidu molybdeničitého a grafitu, jakožto pevných lubrikantů pro zlepšení třecích vlastností a hydroxidu vápenatého pro potenciální zpepšení otěruvzdornosti výsledného povrchu pro palikaci kluzných ložisek.
7

Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites / Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites

Saggar, Richa January 2016 (has links)
Glasses and ceramics offer several unique characteristics over polymers or metals. However, they suffer from a shortcoming due to their brittle nature, falling short in terms of fracture toughness and mechanical strength. The aim of this work is to reinforce borosilicate glass matrix with reinforcements to increase the fracture toughness and strength of the glass. Boron nitride nanomaterials, i.e. nanotubes and nanosheets have been used as possible reinforcements for the borosilicate glass matrix. The tasks of the thesis are many fold which include: 1. Reinforcement of commercially derived and morphologically different (bamboo like and cylinder like) boron nitride nanotubes in borosilicate glass with the concentration of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. Same process was repeated with reinforcing cleaned boron nitride nanotubes (after acid purification) into the borosilicate glass with similar concentrations. 2. Production of boron nitride nanosheets using liquid exfoliation technique to produce high quality and high aspect ratio nanosheets. These boron nitride nanosheets were reinforced in the borosilicate glass matrix with concentrations of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. The samples were consolidated using spark plasma sintering. These composites were studied in details in terms of material analysis like thermo-gravimetric analysis, detailed scanning electron microscopy and transmission electron microscopy for the quality of reinforcements etc.; microstructure analysis which include the detailed study of the composite powder samples, the densities of bulk composite samples etc; mechanical properties which include fracture toughness, flexural strength, micro-hardness, Young’s modulus etc. and; tribological properties like scratch resistance and wear resistance. Cleaning process of boron nitride nanotubes lead to reduction in the Fe content (present in boron nitride nanotubes during their production as a catalyst) by ~54%. This leads to an improvement of ~30% of fracture toughness measured by chevron notch technique for 5 wt% boron nitride nanotubes reinforced borosilicate glass. It also contributed to the improvement of scratch resistance by ~26% for the 5 wt% boron nitride nanotubes reinforced borosilicate glass matrix. On the other hand, boron nitride nanosheets were successfully produced using liquid exfoliation technique with average length was ~0.5 µm and thickness of the nanosheets was between 4-30 layers. It accounted to an improvement of ~45% for both fracture toughness and flexural strength by reinforcing 5 wt% of boron nitride nanosheets. The wear rates reduced by ~3 times while the coefficient of friction was reduced by ~23% for 5 wt% boron nitride nanosheets reinforcements. Resulting improvements in fracture toughness and flexural strength in the composite materials were observed due to high interfacial bonding between the boron nitride nanomaterials and borosilicate glass matrix resulting in efficient load transfer. Several toughening and strengthening mechanisms like crack bridging, crack deflection and significant pull-out were observed in the matrix. It was also observed that the 2D reinforcement served as more promising candidate for reinforcements compared to 1D reinforcements. It was due to several geometrical advantages like high surface area, rougher surface morphology, and better hindrance in two dimensions rather than just one dimension in nanotubes.
8

Le pouvoir lubrifiant des nanotubes de carbone

Chauveau, Vanessa 16 December 2010 (has links)
Les exigences actuelles en terme de lubrification automobile imposent des formulations extrêmement complexes. Parmi tous les additifs présents dans l’huile, on peut noter le dithiocarbamate de molybdène et le dithiophosphate de zinc, additifs à action tribologique, à base de soufre et de phosphore. Pour des raisons environnementales, il est important de diminuer nettement voire d’éliminer la présence de ces deux éléments dans les huiles. Les matériaux à base de carbone présentent des propriétés tribologiques intéressantes mais n’ont jamais été entièrement étudiés. Dans cette étude nous nous sommes intéressés aux propriétés lubrifiantes des nanotubes de carbone (NTCs). Des nanotubes multi-parois ont été dispersés dans l’huile puis les propriétés rhéologiques et tribologiques des « nanolubrifiants » ont été étudiées. Nous nous sommes intéressés à leurs propriétés tribologiques dans deux régimes de lubrification : le régime limite et le régime élastohydrodynamique. Nous nous sommes tout d’abord focalisés sur les propriétés rhéologiques du mélange huile/NTCs.Les nanotubes de carbone possèdent une tendance à s’agréger sous la forme d’un réseau de taille micrométrique ce qui résulte en une nette augmentation de viscosité de l’huile de base. Cet effet épaississant pourrait éventuellement permettre aux NTCs de remplacer une partie de l’Améliorant d’Indice de Viscosité (AVI) habituellement additionné à l’huile de base. Néanmoins, nous avons mis en évidence un effet antagoniste avec les autres additifs de lubrification, tel que le dispersant, qui pourrait être un problème pour une telle utilisation. Nous nous sommes ensuite intéressés aux propriétés des NTCs dans le régime limite de lubrification. Les NTCs présentent des propriétés réductrices de l’usure et du frottement intéressantes sous certaines conditions. Les analyses effectuées laissent supposer un rôle du catalyseur dans le mécanisme de lubrification. Les nanotubes de carbone semblent d’un grand intérêt car, ils possèdent également des propriétés tribologiques en régime élastohydrodynamique (EHD). Le mécanisme de formation des films lubrifiants a été étudié en fonction des paramètres concentrations et vitesses d’entraînement: la propagation des agrégats de NTCs à travers le contact résulte en une augmentation locale de l’épaisseur de film lubrifiant. De plus, une réduction de frottement et un décalage dans l’apparition des premières traces d’usure ont été observés à la suite d’essais tribologiques. Le mécanisme d’action des NTCs en régime de lubrification EHD est proposé dans cette partie. Cependant, les interactions entre les NTCs et les additifs présents dans les lubrifiants entièrement formulés doivent être étudiés pour optimiser la formulation de lubrifiant à base de nanotubes de carbone. / The current requirements in automotive lubrication impose extremely complex formulation. Among all the additives present in oil, one can note the presence of molybdenum dithiocarbamateand zinc dithiophosphate, both tribological additives containing sulfur and phosphorous. For environmental reasons, it is important to reduce or eliminate the presence of these two elements contained in oil. Carbon based materials are expected to present interesting tribological properties but were never really fully investigated. In this study, we are being interested on the lubricant properties of nanometric Carbon NanoTubes (CNT). Multi wall carbon nanotube MWNTs have been dispersed in oil and the behaviour of the blends has been studied in terms of rheology and tribology. We investigated their friction properties in two regims of lubrification : boundary lubrification and elastohydrodynamic (EHD) lubrification. At first, we focused in rheological properties of the blend. Carbon NanoTubes (CNT) present the tendency to aggregate to form micrometric network and this results in an increase in the blend viscosity. This thickening effect could make it possible to replace part of the ViscosityIndex Improver traditionally added to base oil. Nevertheless we reported an antagonist effect with other additives such as dispersant which may be a problem for this purpose. Then we investigated lubricant properties of CNT in boundary regim. CNTs show interesting friction reducing and anti-wear properties in some conditions. The results obtained let suppose a role of the catalyst in the lubrication mechanism. CNT are also of great interest in reason of their potential tribological properties in EHD lubrification regim. The lubricant film formation has been investigated as a function of the speed and the CNT concentration : the propagation of the CNT through the contact results in a local increase in the film thickness. Moreover, a reduction in friction and a drift in the wear onset have been observed under controlled contact kinematics. A potentiel mechanism of lubrification is explained in this last part. However, the interaction between the carbon nanotubes and the other additives present in the fully formulated lubricant need to be carrefully investigated in order to be able in the future to optimise the formulation of new carbon nanotubes based lubricants.
9

Selective laser melting of Al-12Si

Prashanth, Konda Gokuldoss 17 July 2014 (has links) (PDF)
Selective laser melting (SLM) is a powder-based additive manufacturing technique consisting of the exact reproduction of a three dimensional computer model (generally a computer-aided design CAD file or a computer tomography CT scan) through an additive layer-by-layer strategy. Because of the high degree of freedom offered by the additive manufacturing, parts having almost any possible geometry can be produced by SLM. More specifically, with this process it is possible to build parts with extremely complex shapes and geometries that would otherwise be difficult or impossible to produce using conventional subtractive manufacturing processes. Another major advantage of SLM compared to conventional techniques is the fast cooling rate during the process. This permits the production of bulk materials with very fine microstructures and improved mechanical properties or even bulk metallic glasses. In addition, this technology gives the opportunity to produce ready-to-use parts with minimized need for post-processing (only surface polishing might be required). Recently, significant research activity has been focused on SLM processing of different metallic materials, including steels, Ti-, Ni- and Al-based alloys. However, most of the research is devoted to the parameters optimization or to feasibility studies on the production of complex structures with no detailed investigations of the structure-property correlation. Accordingly, this thesis focuses on the production and structure-property correlation of Al-12Si samples produced by SLM from gas atomized powders. The microstructure of the as-prepared SLM samples consists of supersaturated primary Al with an extremely fine cellular structure along with the residual free Si situated at the cellular boundaries. This microstructure leads to a remarkable mechanical behavior: the yield and tensile strengths of the SLM samples are respectively four and two times higher than their cast counterparts. However, the ductility is significantly reduced compared with the cast samples. The effect of annealing at different temperatures on the microstructure and resulting mechanical properties of the SLM parts has been systematically studied by analyzing the size, morphology and distribution of the phases. In addition, the mechanical properties of the SLM samples have been modeled using micro- structural features, such as the crystallite and matrix ligament sizes. The results demonstrate that the mechanical behavior of the Al-12Si SLM samples can be tuned within a wide range of strength and ductility through the use of the proper annealing treatment. The Al-Si alloys are generally used as pistons or cylinder liners in automotive applications. This requires good wear resistance and sufficient strength at the operating temperature, which ranges between 373 – 473 K. Accordingly, the tensile properties of the SLM samples were also tested at these temperatures. Changing the hatch style during SLM processing vary the texture in the material. Hence, samples with different hatch styles were produced and the effect of texture on their mechanical behavior was evaluated. The results show that the hatch style strongly influences both the mechanical properties and the texture of the samples; however no direct correlation was observed between texture and mechanical properties. The wear properties of the Al-12Si material was evaluated using pin-on-disc and fretting wear experiments. These experiments show that the as-prepared SLM samples exhibit better wear resistance than their cast counterparts and the SLM heat-treated samples. Finally, the corrosion investigations reveal that the SLM samples have similar corrosion behavior as the cast specimens under acidic conditions. A major drawback for the wide application of SLM as an industrial processing route is the limited size of the products. This is a direct consequence of the limited dimensions of the available building chambers, which allow for the production of samples with volumes of about 0.02 m3. A possible way to overcome this problem would be the use of the welding processes to join the small SLM objects to form parts with no dimensional limitations. In order to verify this possibility, friction welding was employed to join Al-12Si SLM parts. The results indicate that friction welding not only successfully permits the join materials manufactured by SLM, but also helps to significantly improve their ductility. This work clearly demonstrates that SLM can be successfully used for the production of Al-12Si parts with an overall superior performance of the mechanical and physical properties with respect to the conventional cast samples. Moreover, the mechanical properties of the SLM samples can be widely tuned in-situ by employing suitable hatch styles or ex-situ by the proper heat treatment. This might help the development of SLM for the production of innovative high-performance Al-based materials and structures with controlled properties for automotive and aerospace applications.
10

[en] NITROGEN INCORPORATION INTO AMORPHOUS FLUORINATED CARBON FILMS / [pt] ESTUDO DA INCORPORAÇÃO DE NITROGÊNIO EM FILMES DE CARBONO AMORFO FLUORADO

CARLOS MANUEL SANCHEZ TASAYCO 02 July 2003 (has links)
[pt] As propriedades tribológicas de revestimentos de carbono usados em discos rígidos magnéticos foram de enorme importância para o contínuo aumento da densidade de informação armazenada nos mesmos. As características mecânicas e estruturais de filmes de carbono amorfo também foram indispensáveis para o desenvolvimento de revestimentos que atendessem às especificações do desenvolvimento destes dispositivos: alta dureza e densidade, além de baixo coeficiente de atrito e alta resistência ao desgaste. Neste trabalho são apresentados os efeitos da incorporação de nitrogênio em filmes de carbono fluorado (a-C:H:F) depositados pela técnica de deposição por vapor químico assistido por plasma. As propriedades mecânicas e estruturais foram investigadas com o uso das técnicas nucleares (retroespalhamento Rutherford, detecção de recuo elástico, reação nuclear), espectroscopia de fotoelétrons induzidos por raios-X, medidas de tensão interna (por perfilometria), espectroscopia de absorção no infravermelho, espectroscopia Raman, microscopia de força atômica e medidas de ângulo de contato. Foi depositada uma série de filmes onde foi variada a pressão de N2 em uma atmosfera precursora de CH4-CF4 (1:2) (PN2 = 0% até 60%). A tensão de autopolarização foi fixada em - 350V. Os resultados obtidos mostram que as propriedades dos filmes são controladas pela incorporação de nitrogênio que chega a 20 at.%. Identificou-se um decaimento na taxa de deposição com o incremento da pressão parcial de N2, e um sensível decaimento na concentração de flúor. O filme fica menos tensionado, o que pode resultar em uma melhoria na adesão. Entretanto, o ângulo de contato diminui, resultando em um aumento no coeficiente de atrito. Novos estudos procurando aumentar simultaneamente as concentrações de F e N são sugeridos. / [en] The tribological properties of carbon coatings of hard magnetic disks played an important role for the continuous increase of their storage capacity. The mechanical and structural properties were also important: high density, hardness and wear resistance, and low friction coefficient. In this work, we study the effects of the nitrogen incorporation into fluorinated carbon films (a-C:H:F) deposited by plasma enhanced chemical vapor deposition. The film properties were investigated by using a multitechnique approach: nuclear techniques (Rutherford backscattering, elastic recoil and nuclear reaction analyses), x-ray photoelectron spectroscopy, internal stress measurements by perfilometry, Raman and Infrared spectroscopies, atomic force microscopy and contact angle measurements. Films were deposited changing the N2 partial pressure in a precursor atmosphere also composed by a fixed CH4-CF4 mixture (1:2) (PN2: 0 - 60%), with the self-bias voltage of -350V. The results show that the film properties are controlled by the nitrogen incorporation, with an important fluorine content reduction. The internal stress reduction may result in an increase of the film adhesion. However, the contact angle decreases upon nitrogen incorporation, resulting in an increase of the friction coefficient. New studies with the goal of obtain a simultaneous increase of both fluorine and nitrogen content are suggested.

Page generated in 0.137 seconds