• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variétés de courbure de Ricci presque minorée: inégalités géométriques optimales et stabilité des variétés extrémales

AUBRY, Erwann 23 October 2003 (has links) (PDF)
On s'intéresse à la géométrie des variétés de courbure de Ricci presque supérieure à $k$ (i.e. telle qu'une norme $L^p$---locale ou globale---de la fonction $(\underline(\rm Ric)-k)^-$ soit petite, où $\underline(\rm Ric)(x)$ est la plus petite valeur propre de la courbure de Ricci en $x$). On démontre sous cette hypothèse les équivalents des inégalités géométriques classiques de Myers, de Bishop-Gromov, de Lichnerowicz,... puis on caractérise les variétés qui réalisent presque les cas d'égalité (généralisant des travaux de T.~Colding et de P.~Petersen). Sur une variété compacte $M^n$ de courbure presque positive, le laplacien sur les 1-formes a au plus $n$ petites valeurs propres. S'il a exactement $n$ petites valeurs propres ($n-1$ suffisent si $M$ est orientable) alors $M$ est difféomorphe à une Nilvariété et la métrique est presque invariante à gauche. Ces résultats découlent d'estimées analytiques établies dans la première partie de la thèse.

Page generated in 0.1257 seconds