• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 13
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 119
  • 53
  • 19
  • 17
  • 16
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice

Chai, Xiao-Ning, Ludwig, Friedrich-Alexander, Müglitz, Anne, Schaefer, Michael, Yin, Hai-Yan, Brust, Peter, Regenthal, Ralf, Krügel, Ute 08 May 2023 (has links)
TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2–1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.
92

Role of Transient Receptor Potential Channels in Epithelial Morphogenesis in Chick Embryo

Waddell, Trinity Q 01 July 2019 (has links)
Transient Receptor Potential channels (TRP) are a superfamily of cationic specific ionchannels that are regulated by various stimuli such as temperature, pH, mechanical stress, ligandsand ion concentration. The role of TRP channels in disease states such as autosomal dominantpolycystic kidney disease, cancer metastasis, and developmental defects lend credence to thebelief that they play an important part in epithelial morphogenesis events. The development ofsomites, neural tube closure and migration of neural crest cells to form things such as the faceand heart is a good developmental model for the aforementioned cellular processes. We haveshown that TRP channels can be found in the developing ectoderm, hindbrain, and heart and thatthe inhibition of TRP channels in a developing embryo results in phenotypes suggestingperturbation of cellular remodeling processes. This leads to the question of the specific role ofTRP channels in the epithelial mesenchymal transition and remodeling in developing chickembryos.
93

Determining the mechanism of pathogenesis of mucolipidosis type IV and related lysosomal storage disorders for development of novel therapies

Peterneva, Ksenia January 2014 (has links)
Mucolipidosis type IV (MLIV) is a rare, autosomal recessive, neurodegenerative, lysosomal storage disorder. MLIV is caused by mutations in a gene (MCOLN1) encoding a TRP channel family member known as Mucolipin 1 or TRPML1. TRPML1 is a lysosomal transmembrane protein that appears to be required for normal lysosomal pH regulation, recycling of molecules and membrane reorganisation including lysosomal biogenesis, fusion and exocytosis. The exact function of the channel is unknown but it is permeable to multiple ions including Ca<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>, possibly also Fe<sup>2+</sup> and Zn<sup>2+</sup>. How normal TRPML1 function regulates lysosomal processes is not clearly understood. Mutations in the MCOLN1 gene can lead to complete loss of TRPML1 function, partial loss of function or mislocalisation, all of which lead to lysosomal dysfunction, lysosomal lipid storage and ultimately neurodegeneration. The disease processes that lead to neurodegeneration are poorly understood and at present no therapy exists for MLIV. We have discovered that TRPML1 results in regulating lysosomal Ca<sup>2+</sup> homeostasis that is the opposite of the Ca<sup>2+</sup> dysregulation associated with Niemann-Pick type C disease (NPC). Our findings indicate that disrupted function of TRPML1 leads to enhanced Ca<sup>2+</sup> release via the NAADP receptor, recently shown to be the lysosomal two-pore channel TPC2. This indicates that TRPML1 is not the NAADP receptor as suggested by others, indeed NAADP mediated Ca<sup>2+</sup> release is enhanced with multiple NAADP induced lysosomal Ca<sup>2+</sup> release events occurring in TRPML1 null cells compared to single releases in normal cells. This phenotype appears to be responsible for the cellular dysfunction associated with MLIV disease cells, enhanced lysosomal fusion, defective endocytosis and potentially even altered lysosomal pH. Several of these phenotypes are normalised by the NAADP receptor specific antagonist Ned-19. These findings illustrate that the NAADP receptor is central to MLIV disease pathology and may be a novel candidate for disease therapy.
94

Beyond AMPA and NMDA: Slow synaptic mGlu/TRPC currents : Implications for dendritic integration

Petersson, Marcus January 2010 (has links)
<p>In order to understand how the brain functions, under normal as well as pathological conditions, it is important to study the mechanisms underlying information integration. Depending on the nature of an input arriving at a synapse, different strategies may be used by the neuron to integrate and respond to the input. Naturally, if a short train of high-frequency synaptic input arrives, it may be beneficial for the neuron to be equipped with a fast mechanism that is highly sensitive to inputs on a short time scale. If, on the contrary, inputs arriving with low frequency are to be processed, it may be necessary for the neuron to possess slow mechanisms of integration. For example, in certain working memory tasks (e. g. delay-match-to-sample), sensory inputs may arrive separated by silent intervals in the range of seconds, and the subject should respond if the current input is identical to the preceeding input. It has been suggested that single neurons, due to intrinsic mechanisms outlasting the duration of input, may be able to perform such calculations. In this work, I have studied a mechanism thought to be particularly important in supporting the integration of low-frequency synaptic inputs. It is mediated by a cascade of events that starts with activation of group I metabotropic glutamate receptors (mGlu1/5), and ends with a membrane depolarization caused by a current that is mediated by canonical transient receptor potential (TRPC) ion channels. This current, denoted I<sub>TRPC</sub>, is the focus of this thesis.</p><p>A specific objective of this thesis is to study the role of I<sub>TRPC</sub> in the integration of synaptic inputs arriving at a low frequency, < 10 Hz. Our hypothesis is that, in contrast to the well-studied, rapidly decaying AMPA and NMDA currents, I<sub>TRPC</sub> is well-suited for supporting temporal summation of such synaptic input. The reason for choosing this range of frequencies is that neurons often communicate with signals (spikes) around 8 Hz, as shown by single-unit recordings in behaving animals. This is true for several regions of the brain, including the entorhinal cortex (EC) which is known to play a key role in producing working memory function and enabling long-term memory formation in the hippocampus.</p><p>Although there is strong evidence suggesting that I<sub>TRPC</sub> is important for neuronal communication, I have not encountered a systematic study of how this current contributes to synaptic integration. Since it is difficult to directly measure the electrical activity in dendritic branches using experimental techniques, I use computational modeling for this purpose. I implemented the components necessary for studying I<sub>TRPC</sub>, including a detailed model of extrasynaptic glutamate concentration, mGlu1/5 dynamics and the TRPC channel itself. I tuned the model to replicate electrophysiological in vitro data from pyramidal neurons of the rodent EC, provided by our experimental collaborator. Since we were interested in the role of I<sub>TRPC</sub> in temporal summation, a specific aim was to study how its decay time constant (τ<sub>decay</sub>) is affected by synaptic stimulus parameters.</p><p>The hypothesis described above is supported by our simulation results, as we show that synaptic inputs arriving at frequencies as low as 3 - 4 Hz can be effectively summed. We also show that τ<sub>decay</sub> increases with increasing stimulus duration and frequency, and that it is linearly dependent on the maximal glutamate concentration. Under some circumstances it was problematic to directly measure τ<sub>decay</sub>, and we then used a pair-pulse paradigm to get an indirect estimate of τ<sub>decay</sub>.</p><p>I am not aware of any computational model work taking into account the synaptically evoked I<sub>TRPC</sub> current, prior to the current study, and believe that it is the first of its kind. We suggest that I<sub>TRPC</sub> is important for slow synaptic integration, not only in the EC, but in several cortical and subcortical regions that contain mGlu1/5 and TRPC subunits, such as the prefrontal cortex. I will argue that this is further supported by studies using pharmacological blockers as well as studies on genetically modified animals.</p> / QC 20101005
95

Studium funkce a struktury teplotně aktivovaných TRP iontových kanálů: Role evolučně konzervovaných motivů v modulaci TRPA1 / Functional and structural study of thermally activated TRP ion channels: The role evolutionarily conserved motifs in the TRPA1 modulation

Kádková, Anna January 2016 (has links)
Ankyrin receptor TRPA1 is an ion channel widely expressed on primary afferent sensory neurons, where it acts as a polymodal sensor of nociceptive stimuli. Apart from pungent chemicals (e. g. isothiocyanates, cinnamaldehyde and its derivatives, acrolein, menthol), it could be activated by cold temperatures, depolarizing voltages or intracellular calcium ions. TRPA1 channel is a homotetramer in which each subunit consists of cytoplasmic N and C termini and a transmembrane region. The transmembrane part is organized into six alpha- helices connected by intra- and extracellular loops. The N terminus comprises a tandem set of 16 to 17 ankyrin repeats (AR), while the C terminus has a substantially shorter, dominantly helical structure. In 2015, a partial cryo-EM structure of TRPA1 was resolved; however, the functional roles of the individual regions of the receptor have not yet been fully understood. This doctoral thesis is concerned to elucidate the role of highly conserved sequence and structural motifs within the cytoplasmic termini and the S4-S5 region of TRPA1 in voltage- and chemical sensitivity of the receptor. The probable binding site for calcium ions that are the most important physiological modulators of TRPA1 was described by using homology modeling, molecular-dynamics simulations,...
96

Studies on ion channels of coronary endothelium with clinical implications. / 冠狀動脈內皮離子通道的研究及其臨床意義 / CUHK electronic theses & dissertations collection / Guan zhuang dong mai nei pi li zi tong dao de yan jiu ji qi lin chuang yi yi

January 2011 (has links)
Ca2+-activated potassium channels (KCa) and canonical transient receptor potential (TRPC) channels are essential to endothelial function. In ischemic heart disease, or in cardiac surgery, coronary endothelium is subjected to ischemia-reperfusion (I-R) / hypoxia-reoxygenation (H-R) injury. Hyperkalemic cardioplegic or organ preservation solutions used in cardiac surgery including heart transplantation also impair endothelial function. The present study was designed to mainly investigate whether endothelial dysfunction occurring in H-R or in hyperkalemic exposure is attributable to alterations of intermediate- and small-conductance KCa (IKCa and SKCa) channels, or TRPC channels, in particular, the TRPC3 channel. / Exposure to 60-min hypoxia followed by reoxygenation inhibited the vasorelaxant response of coronary arteries to IKCa / SKCa activator 1-EBIO. H-R reduced endothelial IKCa and SKCa currents and downregulated IKCa expression in PCECs. 1-EBIO enhanced endothelial K+ current that was blunted by H-R. / Exposure to hyperkalemic solutions decreased Ca2+ influx via TRPC3 in PCECs. The reduced Ca2+ influx in PCECs and the attenuated EDHF-mediated vasorelaxation in porcine coronary arteries, which were caused by hyperkalemic or cardioplegic / organ preservation solutions, were restored by OAG. / In PCECs, hypoxia for 60-min with reoxygenation reduced TRPC3 current and Ca2+ influx via TRPC3, which was accompanied by decreased NO release and endothelium-dependent vasorelaxation of porcine coronary arteries. The compromised endothelial function was restored by OAG. The translocation of TRPC3 to endothelial membrane was inhibited by H-R. / In TRPC3-overexpressing HEK293 cells, followed by reoxygenation, short-time hypoxia (10-min) enhanced, whereas prolonged hypoxia (60-min) reduced the current induced by TRPC3/6/7 activator OAG. / Our results indicate that: (1) Endothelial IKCa, SKCa and TRPC3 play an important role in regulating vascular tone; TRPC3 contributes to NO release from endothelial cells and is also involved in the function of EDHF. (2) H-R (60-30 min) reduces endothelial IKCa and SKCa currents with downregulation ofthe protein expression of IKCa. (3) H-R has dual effect on TRPC3 with short-time hypoxia (lO-min) enhancing whereas prolonged hypoxia (60-min) decreasing the electrophysiological activity of this channel. H-R (60-30 min) inhibits the translocation of TRPC3 to endothelial membrane. Furthermore, H-R inhibits Ca2+ influx via TRPC3 and such inhibition is associated with a decrease of NO production. (4) The activator of IKCa / SKCa or TRPC protects coronary endothelium against H-R injury. In coronary endothelium exposed to hyperkalemic or cardioplegic / organ preservation solutions, TRPC activator also exhibits protective effect. / The above findings are likely to have significant implications in ischemic heart disease and in modem cardiopulmonary surgery. / Whole-cell membrane currents of IKCa, SKCa, or TRPC3 were recorded by patch-clamp in primary cultured porcine coronary endothelial cells (PCECs). TRPC3 current was also studied in human embryonic kidney cells (HEK293 cells) transiently overexpressed with TRPC3 gene. Protein or mRNA expression of these channels was detected by Western blot or RT-PCR. Intracellular Ca2+ concentration was measured by Ca2+ imaging technique. Isometric force study was performed in a wire myograph and endothelial nitric oxide (NO) release was measured electrochemically by using a NO-specific microsensor in porcine coronary small arteries. / Huang, Junhao. / "December 2010." / Adviser: Qin Yang. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 138-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
97

TRPV4-TRPC1- BKca tri-complex mediates epoxyeicosatrienoic acid-induced membrane hyperpolarization. / Transient receptor potential vanilloid 4- transient receptor potential channel 1- large conductance calcium activated potassium channels tri-complex mediates epoxyeicosatrienoic acid-induced membrane hyperpolarization / CUHK electronic theses & dissertations collection

January 2011 (has links)
Ma, Yan. / "Ca" in the title is subscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 143-166). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
98

A pilot study: Effect of a novel dual-task treadmill walking program on balance, mobility, gaze and cognition in community dwelling older adults

Nayak, Akshata 31 August 2015 (has links)
A growing body of literature suggests that aging causes restrictions in mobility, gaze, and cognitive functions, increasing the risk of falls and adverse health events. A novel Dual-Task Treadmill walking (DT-TW) program was designed to train balance, gaze, cognition, and gait simultaneously. Eleven healthy community-dwelling older adults (age 70-80 yrs) were recruited to play a variety of computer games while standing on a sponge surface and walking on a treadmill. Data on centre of pressure (COP) excursion for core balance, spatio-temporal gait variability parameters, head tracking performances, and neuropsychological tests were collected pre and post intervention. A significant improvement in balance, gaze, cognition, and gait performance was observed under dual-task conditions. The study thus concludes that DT-TW is a novel intervention program which combines interactive games with exercises to train dual-task abilities in community dwelling older adults. / October 2015
99

Analyzing receptor responses in the Drosophila Johnston's organ with two-photon microscopy

Jähde, Philipp 24 August 2016 (has links)
No description available.
100

Neurological Responses to a Glucose Diet in Caenorhabditis elegans

Dumesnil, Dennis 08 1900 (has links)
TRPV channels play a role in both mammalian insulin signaling, with TRPV1 expression in pancreatic beta-cells, and in C. elegans insulin-like signaling through expression of OSM-9, OCR-1, and OCR-2 in stress response pathways. In response to a glucose-supplemented diet, C. elegans are know to have sensitivity to anoxic stress, exhibit chemotaxis attraction, and display reduced egg-laying rate. Transcriptome analysis reveals that glucose stimulates nervous system activity with increased transcript levels of genes regulating neurotransmitters. Ciliated sensory neurons are needed for a reduced egg-laying phenotype on a glucose-supplemented diet. Egg-laying rate is not affected when worms graze on glucose-supplemented Delta-PTS OP50 E. coli, which is defective in glucose uptake. This suggests a possible sensory neuron obstruction by exopolysaccharides produced by standard OP50 E. coli on glucose, eliciting a starvation response from the worm and causing reduced egg-laying rate. Glucose chemotaxis is affected in specific TRPV subunit allele mutants: ocr-2(vs29) and osm-9(yz6), serotonin receptor mutants: ser-1(ok345) and mod-1(ok103), and G-alpha protein mutant: gpa-10(pk362). TRPV deletion mutants had no effect on glucose chemotaxis, alluding to the modality role pf TRPV alleles in specific sensory neurons. The role of serotonin in a reduced egg-laying rate with glucose remains unclear.

Page generated in 0.0925 seconds