• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Analysis of Digital True Random Number Generator

Yadav, Avantika 31 October 2013 (has links)
Random number generator is a key component for strengthening and securing the confidentiality of electronic communications. Random number generators can be divided as either pseudo random number generators or true random number generators. A pseudo random number generator produces a stream of numbers that appears to be random but actually follow predefined sequence. A true random number generator produces a stream of unpredictable numbers that have no defined pattern. There has been growing interest to design true random number generator in past few years. Several Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) based approaches have been used to generate random data that requires analog circuit. RNGs having analog circuits demand for more power and area. These factors weaken hardware analog circuit-based RNG systems relative to hardware completely digital-based RNGs systems. This thesis is focused on the design of completely digital true random number generator ASIC.
2

Návrh a implementace generátoru náhodných čísel

PECKA, Stanislav January 2018 (has links)
This diploma thesis deals with creation of several random number generators. The data from these prototypes are then compared according to various aspects and statistical methods. The reader is familiar with the basic concepts, the existing random number generators and the technologies used.
3

Development of a FPGA-based True Random Number Generator for Space Applications

Shanmuga Sundaram, Prassanna January 2010 (has links)
<p>Random numbers are required for cryptographic applications such as IT security products, smart cards etc. Hardwarebased random number generators are widely employed. Cryptographic algorithms are implemented on FieldProgrammable Gate Arrays (FPGAs). In this work a True Random Number Generator (TRNG) employed for spaceapplication was designed, investigated and evaluated. Several cryptographic requirements has to be satisfied for therandom numbers. Two different noise sources was designed and implemented on the FPGA. The first design wasbased on ring oscillators as a noise source. The second design was based on astable oscillators developed on a separatehardware board and interfaced with the FPGA as another noise source. The main aim of the project was to analyse theimportant requirement of independent noise source on a physical level. Jitter from the oscillators being the source forthe randomness, was analysed on both the noise sources. The generated random sequences was finally subjected tostatistical tests.</p>
4

Lightweight Silicon-based Security: Concept, Implementations, and Protocols

Majzoobi, Mehrdad 16 September 2013 (has links)
Advancement in cryptography over the past few decades has enabled a spectrum of security mechanisms and protocols for many applications. Despite the algorithmic security of classic cryptography, there are limitations in application and implementation of standard security methods in ultra-low energy and resource constrained systems. In addition, implementations of standard cryptographic methods can be prone to physical attacks that involve hardware level invasive or non-invasive attacks. Physical unclonable functions (PUFs) provide a complimentary security paradigm for a number of application spaces where classic cryptography has shown to be inefficient or inadequate for the above reasons. PUFs rely on intrinsic device-dependent physical variation at the microscopic scale. Physical variation results from imperfection and random fluctuations during the manufacturing process which impact each device’s characteristics in a unique way. PUFs at the circuit level amplify and capture variation in electrical characteristics to derive and establish a unique device-dependent challenge-response mapping. Prior to this work, PUF implementations were unsuitable for low power applications and vulnerable to wide range of security attacks. This doctoral thesis presents a coherent framework to derive formal requirements to design architectures and protocols for PUFs. To the best of our knowledge, this is the first comprehensive work that introduces and integrates these pieces together. The contributions include an introduction of structural requirements and metrics to classify and evaluate PUFs, design of novel architectures to fulfill these requirements, implementation and evaluation of the proposed architectures, and integration into real-world security protocols. First, I formally define and derive a new set of fundamental requirements and properties for PUFs. This work is the first attempt to provide structural requirements and guideline for design of PUF architectures. Moreover, a suite of statistical properties of PUF responses and metrics are introduced to evaluate PUFs. Second, using the proposed requirements, new and efficient PUF architectures are designed and implemented on both analog and digital platforms. In this work, the most power efficient and smallest PUF known to date is designed and implemented on ASICs that exploits analog variation in sub-threshold leakage currents of MOS devices. On the digital platform, the first successful implementation of Arbiter-PUF on FPGA was accomplished in this work after years of unsuccessful attempts by the research community. I introduced a programmable delay tuning mechanism with pico-second resolution which serves as a key component in implementation of the Arbiter-PUF on FPGA. Full performance analysis and comparison is carried out through comprehensive device simulations as well as measurements performed on a population of FPGA devices. Finally, I present the design of low-overhead and secure protocols using PUFs for integration in lightweight identification and authentication applications. The new protocols are designed with elegant simplicity to avoid the use of heavy hash operations or any error correction. The first protocol uses a time bound on the authentication process while second uses a pattern-matching index-based method to thwart reverseengineering and machine learning attacks. Using machine learning methods during the commissioning phase, a compact representation of PUF is derived and stored in a database for authentication.
5

Development of a FPGA-based True Random Number Generator for Space Applications

Shanmuga Sundaram, Prassanna January 2010 (has links)
Random numbers are required for cryptographic applications such as IT security products, smart cards etc. Hardwarebased random number generators are widely employed. Cryptographic algorithms are implemented on FieldProgrammable Gate Arrays (FPGAs). In this work a True Random Number Generator (TRNG) employed for spaceapplication was designed, investigated and evaluated. Several cryptographic requirements has to be satisfied for therandom numbers. Two different noise sources was designed and implemented on the FPGA. The first design wasbased on ring oscillators as a noise source. The second design was based on astable oscillators developed on a separatehardware board and interfaced with the FPGA as another noise source. The main aim of the project was to analyse theimportant requirement of independent noise source on a physical level. Jitter from the oscillators being the source forthe randomness, was analysed on both the noise sources. The generated random sequences was finally subjected tostatistical tests.
6

Generátor náhodných čísel / Random number generator

Zouhar, Petr January 2010 (has links)
The thesis deals with issues of random numbers, their generating and use in cryptography. Introduction of work is aimed to resolution of random number generators and pseudo--random number generators. There is also included often used dividing generators on software and hardware. We mention advantages and disadvantages of each type and area of their use. Then we describe examples of random and pseudorandom numbers, mainly hardware based on physical phenomenon such as the decay of radioactive material or use atmospheric noise. The following part is devoted to suggestion own random number generator and a description of its functionality. In the second half of the work we devote to the field of cryptography. We know basic types of cryptographic systems, namely symmetric and asymmetric cryptosystems. We introduce a typical representant the various type and their properties. At the end of the work we again return to our random number generator and verify the randomness generated numbers and obtained cryptograms.
7

Analyse de fiabilité de circuits logiques et de mémoire basés sur dispositif spintronique / Reliability analysis of spintronic device based logic and memory circuits

Wang, You 13 February 2017 (has links)
La jonction tunnel magnétique (JTM) commutée par la couple de transfert de spin (STT) a été considérée comme un candidat prometteur pour la prochaine génération de mémoires non-volatiles et de circuits logiques, car elle fournit une solution pour surmonter le goulet d'étranglement de l'augmentation de puissance statique causée par la mise à l'échelle de la technologie CMOS. Cependant, sa commercialisation est limitée par la fiabilité faible, qui se détériore gravement avec la réduction de la taille du dispositif. Cette thèse porte sur l'étude de la fiabilité des circuits basés sur JTM. Tout d'abord, un modèle compact de JTM incluant les problèmes principaux de fiabilité est proposé et validé par la comparaison avec des données expérimentales. Sur la base de ce modèle précis, la fiabilité des circuits typiques est analysée et une méthodologie d'optimisation de la fiabilité est proposée. Enfin, le comportement de commutation stochastique est utilisé dans certaines nouvelles conceptions d'applications classiques. / Spin transfer torque magnetic tunnel junction (STT-MTJ) has been considered as a promising candidate for next generation of non-volatile memories and logic circuits, because it provides a perfect solution to overcome the bottleneck of increasing static power caused by CMOS technology scaling. However, its commercialization is limited by the poor reliability, which deteriorates severely with device scaling down. This thesis focuses on the reliability investigation of MTJ based non-volatile circuits. Firstly, a compact model of MTJ including main reliability issues is proposed and validated by the comparison with experimental data. Based on this accurate model, the reliability of typical circuits is analyzed and reliability optimization methodology is proposed. Finally, the stochastic switching behavior is utilized in some new designs of conventional applications.

Page generated in 0.1276 seconds