• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 23
  • 22
  • 7
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 190
  • 190
  • 35
  • 33
  • 24
  • 21
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Characterization of telomere protein complexes in Trypanosoma brucei / Charakterisierung von telomerischen Proteinkomplexen in Trypanosoma brucei

Reis, Helena January 2017 (has links) (PDF)
African trypanosomiasis is a disease endemic to sub-Saharan Africa. It affects humans as well as wild and domestic animals. The human form of the disease is known as sleeping sickness and the animal form as nagana, which are usually fatal if left untreated. The cause of African trypanosomiasis is the unicellular parasite Trypanosoma brucei. During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host the parasite multiplies as bloodstream form (BSF) extracellularly in the bloodstream or the lymphatic system. Survival of BSF parasites relies on immune evasion by antigenic variation of surface proteins because its extracellular lifestyle leads to direct exposure to immune responses. At any given time each BSF cell expresses a single type of variant surface glycoprotein (VSG) on its surface from a large repertoire. The active VSG is transcribed from one of 15 specialized subtelomeric domains, termed bloodstream expression sites (BESs). The remaining 14 BESs are silenced. This monoallelic expression and periodic switching of the expressed VSG enables to escape the immune response and to establish a persistent infection in the mammalian host. During developmental differentiation from BSF to the insect vector-resident procyclic form (PCF), the active BES is transcriptionally silenced to stop VSG transcription. Thus, all 15 BESs are inactive in the PCF cells as surface protein expression is developmentally regulated. Previous reports have shown that the telomere complex components TbTRF, TbRAP1 and TbTIF2 are involved in VSG transcriptional regulation. However, the precise nature of their contribution remains unclear. In addition, no information is available about the role of telomeres in the initiation and regulation of developmental BES silencing. To gain insights into the regulatory mechanisms of telomeres on VSG transcription and developmental repression it is therefore essential to identify the complete composition of the trypanosome telomere complex. To this end, we used two complementary biochemical approaches and quantitative label-free interactomics to determine the composition of telomere protein complexes in T. brucei. Firstly, using a telomeric pull-down assay we found 17 potential telomere-binding proteins including the known telomere-binding proteins TbTRF and TbTIF2. Secondly, by performing a co-immunoprecipitation experiment to elucidate TbTRF interactions we co-purified five proteins. All of these five proteins were also enriched with telomeric DNA in the pull-down assay. To validate these data, I characterized one of the proteins found in both experiments (TelBP1). In BSF cells, TelBP1 co-localizes with TbTRF and interacts with already described telomere-binding proteins such as TbTRF, TbTIF2 and TbRAP1 indicating that TelBP1 is a novel component of the telomere complex in trypanosomes. Interestingly, protein interaction studies in PCF cells suggested a different telomere complex composition compared to BSF cells. In contrast to known members of the telomere complex, TelBP1 is dispensable for cell viability indicating that its function might be uncoupled from the known telomere-binding proteins. Overexpression of TelBP1 had also no effect on cell viability, but led to the discovery of two additional shorter isoforms of TelBP1. However, their source and function remained elusive. Although TelBP1 is not essential for cell viability, western blot analysis revealed a 4-fold upregulation of TelBP1 in the BSF stage compared to the PCF stage supporting the concept of a dynamic telomere complex composition. We observed that TelBP1 influences the kinetics of transcriptional BES silencing during developmental transition from BSF to PCF. Deletion of TelBP1 caused faster BES silencing compared to wild-type parasites. Taken together, TelBP1 function illustrates that developmental BES silencing is a fine-tuned process, which involves stage-specific changes in telomere complex formation. / Afrikanische Trypanosomiasis ist eine Krankheit, die in Afrika südlich der Sahara endemisch vorkommt und sowohl Menschen als auch Wild- und Haustiere betrifft. Die menschliche Form der Krankheit ist als Schlafkrankheit und die Tierform als Nagana bekannt. Ohne Behandlung verläuft die Krankheit in der Regel tödlich. Der einzellige Parasit Trypanosoma brucei ist die Ursache dieser Krankheit. Während seines Lebenszyklus bewegt sich der Parasit zwischen einem Säugetierwirt und einem Insektenvektor, der Tsetsefliege. Im Säugetierwirt vermehrt sich der Parasit als Blutstromform (BSF) extrazellulär im Blutkreislauf und im Lymphsystem. Das Fortbestehen der BSF-Parasiten im Wirt beruht auf einer Immunausweichstrategie durch antigene Variation der Oberflächenproteine. Diese Abwehrstrategie ist erforderlich, da der Parasit durch seinen extrazellulären Lebensstil direkt der Immunantwort ausgesetzt ist. Zu jedem Zeitpunkt wird nur ein variables Oberflächenprotein (VSG) auf der Zelloberfläche aus einem großen Repertoire exprimiert. Dabei wird das aktive VSG von einer von 15 spezialisierten telomerproximalen Transkriptionseinheiten transkribiert, den sogenannten Blutstromform Expression Sites (BESs). Die restlichen 14 BESs sind inaktiv. Diese monoallelische Expression und das periodische Wechseln des exprimierten VSG ermöglichen dem Parasiten der Immunantwort zu entgehen und eine persistente Infektion im Säugetierwirt zu etablieren. Während der Differenzierung von BSF zur Insektenvektor-residenten prozyklischen Form (PCF) wird die aktive BES transkriptionell herunter reguliert um die VSG-Transkription zu stoppen. Somit sind alle 15 BESs in PCF-Zellen inaktiv, da die Expression von Oberflächenproteinen stadienspezifisch reguliert ist. Frühere Veröffentlichungen haben gezeigt, dass die Proteine TbTRF, TbRAP1 und TbTIF2 des Telomerkomplexes an der Transkriptionsregulation von VSG-Genen beteiligt sind. Es ist jedoch unklar, wie genau sie zur Regulation beitragen. Darüber hinaus gibt es keine Informationen über die Rolle von Telomeren bei der Initiation und Regulation der BES-Inaktivierung während der Differenzierung. Um Einblicke in die regulatorischen Mechanismen von Telomeren auf die VSG-Transkription und differenzierungsbedingte Repression der aktiven BES zu gewinnen, ist es daher notwendig, die vollständige Zusammensetzung der Telomerkomplexe in Trypanosomen zu identifizieren. Zu diesem Zweck wurden zwei komplementäre biochemische Ansätze und quantitative Massenspektrometrie genutzt um die Zusammensetzung von Telomerproteinkomplexen in T. brucei zu bestimmen. Zunächst wurden mittels einer Affinitätschromatographie mit TTAGGG-Oligonukleotiden 17 potentielle telomerbindende Proteine gefunden. Darunter waren auch die bereits bekannten telomerbindenden Proteine TbTRF und TbTIF2. Zweitens wurde mit Hilfe eines Co-Immunpräzipitationsexperiments um die Interaktionen von TbTRF aufzuklären, fünf Proteine aufgereinigt. Alle diese fünf Proteine wurden auch mit telomerischer DNA in der Affinitätschromatographie angereichert. Um diese Daten zu validieren, wurde eines der in beiden Experimenten gefundenen Proteine (TelBP1) charakterisiert. In BSF-Zellen co-lokalisiert TelBP1 mit TbTRF und interagiert mit bereits beschriebenen telomerbindenden Proteinen wie TbTRF, TbTIF2 und TbRAP1. Dies deutet darauf, dass TelBP1 eine weitere Komponente des Telomerkomplexes in Trypanosomen ist. Interessanterweise deuteten Proteininteraktionsstudien in PCF-Zellen auf eine andere Zusammensetzung des Telomerkomplexes im Vergleich zu BSF-Zellen. Im Gegensatz zu den bekannten Mitgliedern des Telomerkomplexes ist TelBP1 für das Zellwachstum nicht essentiell. Damit könnte die Funktion von TelBP1 von den bekannten telomerbindenden Proteinen entkoppelt sein. Die Überexpression von TelBP1 zeigte auch keinen Einfluss auf das Zellwachstum, führte aber zur Entdeckung von zwei weiteren kürzeren Isoformen von TelBP1. Ihr Ursprung und Funktion blieben jedoch ungeklärt. Obwohl TelBP1 für das Zellwachstum entbehrlich ist, zeigten Westernblot-Analysen eine 4-fache Hochregulierung von TelBP1 in BSF-Zellen im Vergleich zu PCF-Zellen. Die stadienspezifische Regulation von TelBP1 unterstützt damit das Konzept von einer dynamischen Zusammensetzung der Telomerkomplexe. Zudem wurde beobachtet, dass TelBP1 die Kinetik der Inaktivierung der aktiven BES während der Differenzierung von der BSF zur PCF beeinflusst. Die Deletion von TelBP1 führte zu einem schnelleren Abschalten der BES im Vergleich zu Wildtyp-Parasiten. Zusammengefasst zeigt die Funktion von TelBP1, dass das Abschalten der aktiven BES während der Differenzierung ein fein abgestimmter Prozess ist, der stadienspezifische Veränderungen der Telomerkomplexe beinhaltet.
72

Single-molecule fluorescence microscopy in live \(Trypanosoma\) \(brucei\) and model membranes / Einzelmolekül-Fluoreszenzmikroskopie in lebenden \(Trypanosoma\) \(brucei\) und Modellmembranen

Glogger, Marius January 2018 (has links) (PDF)
Der eukaryotische Parasit Trypanosoma brucei hat komplexe Strategien entwickelt um der Immunantwort eines Wirtes zu entkommen und eine persistente Infektion innerhalb dessen aufrechtzuerhalten. Ein zentrales Element seiner Verteidigungsstrategie stützt sich auf die Schutzfunktion seines Proteinmantels auf der Zelloberfläche. Dieser Mantel besteht aus einer dichten Schicht aus identischen, Glykosylphosphatidylinositol (GPI)-verankerten variablen Oberflächenglykoproteinen (VSG). Der VSG Mantel verhindert die Erkennung der darunterliegenden, invarianten Epitope durch das Immunsystem. Obwohl es notwendig ist die Funktionsweise des VSG Mantels zu verstehen, vor allem um ihn als mögliches Angriffsziel gegen den Parasiten zu verwenden, sind seine biophysikalischen Eigenschaften bisher nur unzureichend verstanden. Dies ist vor allem der Tatsache geschuldet, dass die hohe Motilität der Parasiten mikroskopische Studien in lebenden Zellen bisher weitestgehend verhinderten. In der vorliegenden Arbeit wird nun hochmoderne Einzelmolekül-Fluoreszenzmikroskopie (EMFM) als Möglichkeit für mikroskopische Untersuchungen im Forschungsbereich der Trypanosomen vorgestellt. Die Arbeit umfasst Untersuchungen der VSG Dynamik unter definierten Bedingungen künstlicher Membransysteme. Es wurde zuerst der Einfluss der lateralen Proteindichte auf die VSG Diffusion untersucht. Experimente mittels Fluoreszenz- Wiederkehr nach irreversiblem Photobleichen und komplementäre Einzelmolekül- Verfolgungs Experimente offenbarten, dass ein molekularer Diffusionsschwellenwert existiert. Über diesem Schwellenwert wurde eine dichteabhänige Reduzierung des Diffusionskoeffizienten gemessen. Eine relative Quantifizierung der rekonstituierten VSGs verdeutlichte, dass der Oberflächenmantel der Trypanosomen sehr nahe an diesem Schwellenwert agiert. Der VSG Mantel ist optimiert um eine hohe Proteindichte bei gleichzeitiger hoher Mobilität der VSGs zu gewährleisten. Des Weiteren wurde der Einfluss der VSG N-Glykosylierung auf die Diffusion des Proteins quantitativ untersucht. Die Messungen ergaben, dass die N-Glykosylierung dazu beiträgt eine hohe Mobilität bei hohen Proteindichten aufrechtzuerhalten. Eine detaillierte Analyse von VSG Trajektorien offenbarte, dass zwei unterschiedliche Populationen frei diffundierender VSGs in der künstlichen Membran vorlagen. Kürzlich wurde entdeckt, dass VSGs zwei strukturell unterschiedliche Konformationen annehmen können. Die Messungen in der Arbeit stimmen mit diesen Beschreibungen überein. Die Ergebnisse der EMFM in künstlichen Membranen wurden durch VSG Einzelmolekül- Verfolgungs Experimente auf lebenden Zellen ergänzt. Es wurde eine hohe Mobilität und Dynamik einzelner VSGs gemessen, was die allgemein dynamische Natur des VSG Mantels verdeutlicht. Dies führte zu der Schlussfolgerung, dass der VSG Mantel auf lebenden Trypanosomen ein dichter und dennoch dynamischer Schutzmantel ist. Die Fähigkeit der VSGs ihre Konformation flexibel anzupassen, unterstützt das Erhalten der Fluidität bei variablen Dichten. Diese Eigenschaften des VSG Mantels sind elementar für die Aufrechterhaltung einer presistenden Infektion eines Wirtes. In dieser Arbeit werden des Weiteren verschiedene, auf Hydrogel basierende Einbettungsmethoden vorgestellt. Diese ermöglichten die Zellimmobilisierung und erlaubten EMFM in lebenden Trypanosomen. Die Hydrogele wiesen eine hohe Zytokompatibilität auf. Die Zellen überlebten in den Gelen für eine Stunde nach Beginn der Immobilisierung. Die Hydrogele erfüllten die Anforderungen der Superresolution Mikroskopie (SRM) da sie eine geringe Autofluoreszenz im Spektralbereich der verwendeten Fluorophore besaßen. Mittels SRM konnte nachgewiesen werden, dass die Hydrogele die Zellen effizient immobilisierten. Als erstes Anwendungsbeispiel der Methode wurde die Organisation der Plasmamembran in lebenden Trypanosomen untersucht. Die Untersuchung eines fluoreszenten Tracers in der inneren Membranschicht ergab, dass dessen Verteilung nicht homogen war. Es wurden spezifische Membrandomänen gefunden, in denen das Molekül entweder vermehrt oder vermindert auftrat. Dies führte zu der Schlussfolgerung, dass diese Verteilung durch eine Interaktion des Tracers mit Proteinen des zellulären Zytoskeletts zustande kam. Die in dieser Arbeit präsentierten Ergebnisse zeigen, dass EMFM erfolgreich für verschiedene biologische Untersuchungen im Forschungsfeld der Trypanosomen angewendet werden kann. Dies gilt zum Beispiel für die Untersuchung von der VSG Dynamik in künstlichen Membransystemen, aber auch für Studien in lebenden Zellen unter Verwendung der auf Hydrogelen basierenden Zelleinbettung. / The eukaryotic parasite Trypanosoma brucei has evolved sophisticated strategies to escape the host immune response and maintain a persistent infection inside a host. One central feature of the parasite’s defense mechanism relies on the shielding function of their surface protein coat. This coat is composed of a dense arrangement of one type of glycosylphosphatidylinositol (GPI)-anchored variant surface glycoproteins (VSGs) which impair the identification of epitopes of invariant surface proteins by the immune system. In addition to the importance of understanding the function of the VSG coat and use it as a potential target to efficiently fight the parasite, it is also crucial to study its biophysical properties as it is not yet understood sufficiently. This is due to the fact that microscopic investigations on living trypanosomes are limited to a great extent by the intrinsic motility of the parasite. In the present study, state-of-the-art single-molecule fluorescence microscopy (SMFM) is introduced as a tool for biophysical investigations in the field of trypanosome research. The work encompasses studies of VSG dynamics under the defined conditions of an artificial supported lipid bilayer (SLB). First, the impact of the lateral protein density on VSG diffusion was systematically studied in SLBs. Ensemble fluorescence after photobleaching (FRAP) and complementary single-particle tracking experiments revealed that a molecular crowding threshold (MCT) exists, above which a density dependent decrease of the diffusion coefficient is measured. A relative quantification of reconstituted VSGs illustrated that the VSG coat of living trypanosomes operates very close to its MCT and is optimized for high density while maintaining fluidity. Second, the impact of VSG N-glycosylation on VSG diffusion was quantitatively investigated. N-glycosylation was shown to contribute to preserving protein mobility at high protein concentrations. Third, a detailed analysis of VSG trajectories revealed that two distinct populations of freely diffusing VSGs were present in a SLB, which is in agreement with the recent finding, that VSGs are able to adopt two main structurally distinct conformations. The results from SLBs were further complemented by single-particle tracking experiments of surface VSGs on living trypanosomes. A high mobility and free diffusion were measured on the cell surface, illustrating the overall dynamic nature of the VSG coat. It was concluded that the VSG coat on living trypanosomes is a protective structure that combines density and mobility, which is supported by the conformational flexibility of VSGs. These features are elementary for the persistence of a stable infection in the host. Different hydrogel embedding methods are presented, that facilitated SMFM in immobilized, living trypanosomes. The hydrogels were found to be highly cytocompatible for one hour after cross-linking. They exhibited low autofluorescence properties in the spectral range of the investigations, making them suitable for super-resolution microscopy (SRM). Exemplary SRM on living trypanosomes illustrated that the hydrogels efficiently immobilized the cells on the nanometer lever. Furthermore, the plasma membrane organization was studied in living trypanosomes. A statistical analysis of a tracer molecule inside the inner leaflet of the plasma membrane revealed that specific membrane domains exist, in which the tracer appeared accumulated or diluted. It was suggested that this distribution was caused by the interaction with proteins of the underlying cytoskeleton. In conclusion, SMFM has been successfully introduced as a tool in the field of trypanosome research. Measurements in model membranes facilitated systematic studies of VSG dynamics on the single-molecule level. The implementation of hydrogel immobilization allowed for the study of static structures and dynamic processes with high spatial and temporal resolution in living, embedded trypanosomes for the first time.
73

Characterization of a novel putative factor involved in host adaptation in Trypanosoma brucei / Charakterisierung einer neuen Komponente für die Wirtsanpassung in Trypanosoma brucei

Cicova, Zdenka January 2016 (has links) (PDF)
Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level in a systematic way. However, a detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor (Tb927.11.2400) identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin like (TbFlabarinL) and demonstrate that it is a result of a gene duplication event, which occurred in African trypanosomes. TbFlabarinL is not essential for growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated a TbFlabarinL-specific antibody and showed that it localizes in the flagellum. The co-immunoprecipitation experiment together with a biochemical cell fractionation indicated a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod. / Trypansomen zeigen sich im Laufe ihres komplexen Lebeszyklus als Meister der Adaption an verschiedene Umweltbedingungen ihrer Wirte. Umfangreiche proteomische Analysen geben systematisch Auskunft über Änderungen auf zellulärer Ebene. Detailierte Arbeit an einzelnen Komponenten ist jedoch nötig, um die Adaptionsmechanismen auf molekularer Ebene zu verstehen. Wir haben im Rahmen dieser Arbeit eine detaillierte Charakterisierung eines stadienspezifischen mutmaßlich flagellaren Wirtsadaptionsfaktors der Blutstromform (BSF) durchgeführt (Tb927.11.2400), der zuvor in einer SILAC-basierten vergleichenden Proteomstudie idendifiziert wurde. Tb927.11.2400 teilt 38% der mit TbFlabarin (Tb927.11.2410), eines stadienspezifischen flagellaren BAR- domänen Proteins der prozyklischen Form (PCF). Wir haben Tb927.11.2400 TbFlabarin like (TbFlabarinL) genannt und zeigen, dass es das Ergebnis eines Genduplikations-Ereignisses darstellt, das in afrikanischen Trypanosomen aufgetreten ist. TbFlabarinL ist nicht essentiell für das Wachstum der Parasiten unter Zellkultur-Bedingungen und entbehrlich für den Differenzierungprozess von BSF zu PCF in vitro. Wir haben einen TbFlabarinL-spezifischen Antikörper entwickelt und zeigen, dass er in der Flagelle lokalisiert. Das Co-immunoprezipitations-Experiment deutet zusammen mit einer biochemischen Zellfraktionierung darauf hin, dass TbFlabarinL mit der flagellaren Membran und Komponenten der paraflagellaren Stab binär assoziiert ist.
74

Etude de composantes de la voie TOR : caractérisation de TbFKBP12, une protéine de la famille des PPIases (isomérases) impliquée dans l’homéostasie du flagelle chez Trypanosoma brucei./ Study of the TOR pathway components: characterization of TbFKBP12, a protein from the PPIases family (isomerases) involved in flagellum homeostasis in Trypanosoma brucei.

Brasseur, Anaïs 20 October 2009 (has links)
Trypanosoma brucei est un parasite africain unicellulaire, responsable chez l’homme de la maladie du sommeil et chez les bovins de la Nagana. Il passe par différents stades lors de son cycle de vie, les deux principaux étant la forme sanguicole qui prolifère dans le sang des mammifères infectés, et la forme procyclique qui colonise le tube digestif du vecteur, la mouche glossine. Les trypanosomes sont extracellulaires, ils possèdent un flagelle qui leur permet de se mouvoir dans les différents milieux qu’ils infestent. La structure de celui-ci contient des éléments conservés au cours de l’évolution. Il constitue donc un excellent modèle de base pour en étudier l’architecture. D’autre part, le flagelle du parasite contient des structures propres à certains kinétoplastides, offrant ainsi une cible thérapeutique aux traitements anti-trypanosomiaux. Le flagelle est véritablement un organite plurifonctionnel nécessaire à la survie du parasite au sein des divers environnements qu’il rencontre lors de son cycle de développement. Outre son rôle moteur, il permet à la cellule d’échapper au système immunitaire de son hôte mammifère et de s’attacher à l’épithélium des glandes salivaires de l’insecte. Il est également requis pour le bon positionnement des organites, la morphogenèse et la division cellulaire. Enfin, il serait impliqué dans l’activité sensorielle du trypanosome. A ce jour, on ne connait quasiment rien des potentielles voies de « sensing ». Elles doivent pourtant exister, permettant l’appréhension de l’environnement, l’interaction avec les hôtes et la réception de signaux induisant la différenciation. Cet intérêt pour les voies de signalisation du parasite a abouti à l’étude des composantes de la voie TOR. TOR-Target of Rapamycin est un contrôleur central de la croissance cellulaire qu’il régule en fonction de différents stimuli externes. Il a été démontré depuis que chez T.brucei aussi, TOR régulerait la croissance temporelle et spatiale de la cellule. La kinase TOR est inhibée par sa liaison avec le complexe rapamycine-FKBP12. Nous avons identifié cette peptidyl-prolyl cis-trans isomérase chez le parasite : TbFKBP12. Elle y serait localisée au niveau du cytosquelette/flagelle. Contrairement à ce qui est observé chez la levure S.cerevisiae, l’isomérase est essentielle chez le trypanosome. Son invalidation par RNAi bloque la cytocinèse des parasites sanguicoles et provoque l’apparition d’axes de clivage internes à la cellule. Chez les formes procycliques par contre, la disparition de la protéine entraîne un défaut sévère de motilité du flagelle qui se traduit par une immobilisation partielle du parasite. TbFKBP12 est donc impliquée dans l’homéostasie du flagelle chez le trypanosome africain, organite nécessaire à la motilité et à la division cellulaire.
75

Tricyclic purine analogues as antiparasitic and antiviral agents

Hagos, Asmerom M., January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Chemistry and Biochemistry, Georgia Institute of Technology, 2004. Directed by Katherine L. Seley. / Includes bibliographical references (leaves 113-126).
76

Kinetoplastid RNA editing ligases : functional analysis and editosome association /

Palazzo, Setareh Seraji. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 164-175).
77

Recombinant expression of, and characterisation of antibodies against variable surface glycoproteins : LiTat 1.3 and LiTat 1.5 of Trypanosoma brucei gambiense.

Mnkandla, Sanele Michelle. 21 July 2014 (has links)
Human African Trypanosomiasis (HAT), also known as sleeping sickness is one of the many life threatening tropical diseases posing a serious risk to livelihoods in Africa. The disease is restricted to the rural poor across sub–Saharan Africa, where tsetse flies that transmit the disease, are endemic. Sleeping sickness is known to be caused by protozoan parasites of the genus Trypanosoma brucei, with the two sub-species: T. b. gambiense and T. b. rhodesiense, responsible for causing infection in humans. The disease develops in two stages, firstly, the infection is found in the blood and secondly, when the parasites cross the blood-brain barrier entering the nervous system. To date, no vaccines have been developed, however, there is a range of drugs and treatments available which depend on the type of infection (T. b. gambiense or T. b. rhodesiense) as well as disease stage. The trypanosome parasites have a two-host life cycle i.e. in the mammalian host as well as the tsetse fly vector. Throughout the cycle, the parasite undergoes changes, one of them being the acquisition of a variable surface glycoprotein (VSG) coat prior to entry into the human host bloodstream. Once in the host, the infection progresses and through a phenomenon known as antigenic variation, the parasite expresses a different VSG coat periodically, enabling the parasites to constantly evade the host’s immune response, facilitating their survival. The VSG genes coding for the proteins are activated by an intricate process involving the encoding of a gene which is kept silent, until activated in one of several expression sites. Despite the constant switching of VSG surface coats, there are VSG forms that are predominantly expressed in T. b. gambiense namely VSGs LiTat 1.3, LiTat 1.5 and LiTat 1.6 which are used in diagnostic tests, as antigens to detect antibodies in infected sera of HAT patients. The acquisition of these VSG antigens is, however, of high risk to staff handling the parasites, and so the first part of the study was aimed at cloning, recombinantly expressing and purifying the two VSGs known to be recognised by all gambiense HAT patients: LiTat 1.3 and LiTat 1.5, for possible use as alternative antigens in diagnostic tests. The genes encoding both VSGs, LiTat 1.3 and LiTat 1.5, were first amplified from either genomic or complementary DNA (gDNA or cDNA), cloned into a pTZ57R/T-vector and sub-cloned into pGEX or pET expression vectors prior to recombinant expression in E. coli BL21 DE3 and purification by Ni-affinity chromatography. Amplification and subsequent cloning yielded the expected 1.4 kb and 1.5 kb for the LiTat 1.3 and LiTat 1.5 genes respectively. Recombinant expression in E. coli was only successful with the constructs cloned from cDNA, i.e. the pGEX4T-1-cLiTat 1.3 and pET-28a-cLiTat 1.3 clones. Purification of the 63 kDa cLiTat 1.3His protein following solubilising and refolding did not yield pure protein and there were also signs of protein degradation. For comparison, expression was also carried out in P. pastoris and similar to the bacterial system, expression was only successful with the LiTat 1.3-SUMO construct yielding a 62.7 kDa protein. Purification of LiTat 1.3SUMO also surpassed that of cLiTat 1.3His with no degradation. The diagnostic tests based on VSGs LiTat 1.3 and LiTat 1.5 as antigens operate by binding with antibodies in infected sera, to confirm infection. These antibody detection tests have their limitations, hence an alternative would be antigen detection tests, which use antibodies to detect the respective antigens in infected sera. The second part of the study therefore involved antibody production, where chickens were immunised with the native VSGs LiTat 1.3, LiTat 1.5 as well as recombinant RhoTat 1.2 (a VSG expressed in T. evansi). Antibody production was analysed by ELISA and characterised by western blotting, prior to immunolabelling of T. b. brucei Lister 427 parasites. The chicken IgY showed a response to the immunogens, and were able to detect their respective proteins in the western blot. Interestingly, the anti-nLiTat 1.3, anti-nLiTat 1.5 and anti-rRhoTat 1.2 antibodies were able to detect their respective VSGs on the T. b. brucei trypanosome parasites in the immunofluorescence assay, thus demonstrating cross reactivity. As the antibodies showed specificity, they could potentially detect antigens in infected sera of HAT patients in an antigen detection based test. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
78

Heterologous expression of invariant surface glycoproteins, ISG75 of Trypanosoma brucei brucei and T.b. gambiense, for antibody production and diagnosis of African Trypanosomiasis.

Baiyegunhi, Omolara O. 21 July 2014 (has links)
Accurate diagnosis of the presence of an infectious organism is very important for therapeutic interventions and consequently the recovery of the individual. There is a need for identifying new diagnostic antigens for the serological diagnosis of trypanosomiasis, a disease of humans and animals in Africa caused by protozoa belonging to the genus Trypanosoma. Invariant surface glycoproteins (ISGs) are present in most strains of the parasite and have the potential to replace the variable surface glycoproteins as diagnostic antigens. In order to avoid the challenges of in vivo culturing of bloodstream form (BSF) trypanosomes in laboratory animals, ISG65 and ISG75, the two most common ISGs were heterologously expressed in Escherichia coli and Pichia pastoris expression systems. The extracellular domains of ISG65 and ISG75 of both T. b. brucei and T. b. gambiense were amplified by PCR from genomic DNA using appropriate primers to give inserts of 1121 bp and 1342 bp sizes. These were sub-cloned into the pGEX-4T1 and pET28a expression vectors. Chemically competent E. coli BL21 (DE3) were transformed using the resultant plasmids and the transformed E. coli cells were used for heterologous protein expression. The expressed proteins were purified by three phase partitioning (TPP), nickel or glutathione affinity and molecular exclusion chromatography and analysed by reducing SDS-PAGE. The glycosylation status of ISG65 and ISG75 expressed in the M5 strain of P. pastoris, which has an engineered N-glycosylation pathway that produces glycosylated proteins similar to what is obtained in trypanosomes, was determined. The enzymatic action of Endoglycosidase H resulted in a shift in the electrophoretic migration of ISG65 but not ISG75 on SDS-PAGE, confirming N-glycosylation. Anti-ISG65 and anti-ISG75 antibodies were produced in chickens and affinity purified using the respective recombinant proteins immobilised on affinity matrices. The antibodies recognised native ISG65 and ISG75 respectively in western blots of lysates of T. b. brucei parasites cultured in vitro. Similar recognition of the native ISGs by the anti-recombinant ISG antibodies was also obtained using immunofluorescence microscopy of fixed T. b. brucei parasites. The results obtained demonstrate the potential of application of the recombinant ISG65 and ISG75 and their respective antibodies in the diagnosis of African trypanosomiasis. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
79

The function of Phosphatidylinositol 4-Kinase III-Beta in Trypanosoma Brucei

Rodgers, Melissa Jeane January 2006 (has links)
Dissertation (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2006. / Vita. Bibliography: p. 87-94.
80

The role of intraflagellar transport in signaling in the African trypanosome Trypanosoma brucei /

Poole, Lindsey. January 2008 (has links) (PDF)
Undergraduate honors paper--Mount Holyoke College, 2008. Dept of Biological Sciences. / Includes bibliographical references (leaves 51-53).

Page generated in 0.0341 seconds